Some Features of Calculating the Lightning-Induced Damages to Overhead Power Line Elements
DOI:
https://doi.org/10.24160/1993-6982-2020-6-46-52Keywords:
number of lightning strikes, overhead power line, downward negative leader, upward connecting leader from an object, leader step length, streamer corona flash, striking probability, probabilistic approachAbstract
The article presents the main principles and specific features of a procedure for calculating the lightning-induced damage inflicted to power transmission line elements based on a probabilistic approach. The procedure takes into account the modern concepts on how lightning strikes at ground objects. A model simulating the development of a downward lightning leader in a manner maximally close to the real negative stepped leader development process is proposed. A scheme illustrating how a leader is targeting at a ground object has been developed. By solving the problem within the framework of 3D modeling, the possibility of a connecting leader to develop not only from the phase wires and overhead ground wires, but also from the line supports can be analyzed. Based on experimental and theoretical studies, a probabilistic approach for conditions under which the streamer corona flash transforms into an upward leader is proposed. The possibility of taking into account the natural and climatic conditions, and topography in the line route regions is considered. The elaborated procedure and the software package developed on its basis allow the places of lightning strikes at overhead power line elements and their probabilities to be predicted in the most grounded manner, which will make it possible to set up reliable overhead power line protection.
References
2. Evaluation of Lightning Shielding Analysis Methods for EHV and UHV DC and AC Transmission Lines. CIGRE, 2017.
3. Калугина И.Е. Развитие вероятностной методики расчета молниезащищенности воздушных линий электропередачи // Электричество. 2011. № 11. С. 25—30.
4. Гундарева C.B., Калугина И.Е., Темников А.Г. Об особенностях методики расчета поражаемости наземных взрывоопасных объектов молнией // ЖТФ. 2016. Т. 86. № 10. С. 139—141.
5. Гайворонский А.С., Карасюк К.В. Новые методические принципы оценки грозоупорности воздушных линий электропередачи высших классов напряжения // Научный вестник НГТУ. 1998. № 2 (5). С. 9—32.
6. Li Z., Zeng R., Zhuang C., Yin H. Study on the Influence of Space Charge on the Upward Leader Emerging From the Conductors of UHVDC Transmission Lines // IEEE Trans. Power Delivery. 2015. V. 30. No. 1. Pp.106—113.
7. Mazur V., Ruhnke L.H., Bondiou-Clergerie A., Lalande P. Computer Simulation of a Downward Negative Stepped Leader and Its Interaction with a Ground Structure // J. Geophysical Res. 2000. V. 105. No. D17. Pp. 22361—22369.
8. Filipe N. e. a. A Methodology for Estimating Transmission Lines Lightning Performance Using a Statistical Approach // Proc. 33rd Intern. Conf. Lightning Protection. Lisbon, 2016. P. 105.
9. Lightning Parameters for Engineering Applications. CIGRE, 2013.
10. Vidal F. e. a. Modeling of the Air Plasma Near the Tip of the Positive Leader // IEEE Trans. Plasma Sci. 2002. V. 30. Pp. 1339—1349.
11. Темников А.Г., Гундарева С.В., Калугина И.Е., Герастенок Т.К. О критерии возникновения восходящего лидера с наземных объектов // Письма в ЖТФ. 2014. Т. 40. № 3. С. 42—48.
---
Для цитирования: Калугина И.Е., Темников А.Г., Гундарева С.В., Черненский Л.Л. Особенности расчета поражения молнией элементов воздушных линий электропередачи // Вестник МЭИ. 2020. № 6. С. 46—52. DOI: 10.24160/1993-6982-2020-6-46-52.
#
1. Lightning Protection. IET Power and Energy. Ser. 58. London: Institution of Eng. and Technol., 2010.
2. Evaluation of Lightning Shielding Analysis Methods for EHV and UHV DC and AC Transmission Lines. CIGRE, 2017.
3. Kalugina I.E. Razvitie Veroyatnostnoy Metodiki Rascheta Molniezashchishchennosti Vozdushnykh Liniy Elektroperedachi. Elektrichestvo. 2011;11:25—30. (in Russian).
4. Gundareva C.B., Kalugina I.E., Temnikov A.G. Ob Osobennostyakh Metodiki Rascheta Porazhaemosti Nazemnykh Vzryvoopasnykh Ob′ektov Molniey. ZHTF. 2016;86;10:139—141. (in Russian).
5. Gayvoronskiy A.S., Karasyuk K.V. Novye Metodicheskie Printsipy Otsenki Grozoupornosti Vozdushnykh Liniy Elektroperedachi Vysshikh Klassov Napryazheniya. Nauchnyy Vestnik NGTU. 1998;2 (5):9—32. (in Russian).
6. Li Z., Zeng R., Zhuang C., Yin H. Study on the Influence of Space Charge on the Upward Leader Emerging From the Conductors of UHVDC Transmission Lines. IEEE Trans. Power Delivery. 2015;30;1:106—113.
7. Mazur V., Ruhnke L.H., Bondiou-Clergerie A., Lalande P. Computer Simulation of a Downward Negative Stepped Leader and Its Interaction with a Ground Structure. J. Geophysical Res. 2000;105;D17:22361—22369.
8. Filipe N. e. a. A Methodology for Estimating Transmission Lines Lightning Performance Using a Statistical Approach. Proc. 33rd Intern. Conf. Lightning Protection. Lisbon, 2016:105.
9. Lightning Parameters for Engineering Applications. CIGRE, 2013.
10. Vidal F. e. a. Modeling of the Air Plasma Near the Tip of the Positive Leader. IEEE Trans. Plasma Sci. 2002;30:1339—1349.
11. Temnikov A.G., Gundareva S.V., Kalugina I.E., Gerastenok T.K. O kriterii Vozniknoveniya Voskhodyashchego Lidera s Nazemnykh Ob′ektov. Pis'ma v ZHTF. 2014;40;3:42—48. (in Russian).
---
For citation: Kalugina I.E., Temnikov A.G., Gundareva S.V., Chernensky L.L. Some Features of Calculating the Lightning-Induced Damages to Overhead Power Line Elements. Bulletin of MPEI. 2020;6:46—52. (in Russian). DOI: 10.24160/1993-6982-2020-6-46-52.

