Crosstalk in Electrical Wire Bundles with Shield Heterogeneities Nguyen Van Tai, V.Yu. Kirillov
DOI:
https://doi.org/10.24160/1993-6982-2020-6-76-81Keywords:
crosstalk electromagnetic interference, shields, electrical wire bundles, electrical connectorsAbstract
The results from an experimental study of crosstalk interference between twisted pairs of conductors of an electrical wire bundle model are presented. The aim of the study is to determine the crosstalk interference levels in a shielded twisted pair of conductors when there is heterogeneity in the form of a gap between the shield of bundle conductors and the electrical connector body. The studies were carried out on the electrical wire bundle mockup consisting of shielded and unshielded twisted pairs of conductors. The unshielded twisted pair of conductors was used as a source of crosstalk interference. The shielded twisted pair of conductors had a gap between the shield of conductors and the electrical connector body and was a receptor for the crosstalk interference. To study the crosstalk interference levels, the gap length of the shielded twisted pair of conductors was varied. As a result of the study, the crosstalk interference levels for gaps of different lengths were determined. The effect of an electrically conducting connection made using a jumper in the gap between the shield of a twisted pair of conductors and the electrical connector body of the electrical wire bundle mockup on the crosstalk interference levels was studied. A comparative analysis of the results obtained from measurements of the crosstalk interference levels in a shielded twisted pair of conductors with heterogeneities in the form of gaps of different lengths with the crosstalk interference levels in a shielded twisted pair of conductors with a homogeneous shield is carried out. A conclusion about the need to ensure connection of the shields of electrical bundle conductors with the bodies od electrical connectors without gaps has been formulated.
References
2. Уилльямс Т. ЭМС для разработчиков продукции. М.: Издат. дом «Технологии», 2003.
3. Уилльямс Т., Армстронг К. ЭМС для систем и установок. М.: Издат. дом «Технологии», 2004.
4. Дьяков А.Ф., Максимов Б.К., Борисов Р.К., Кужекин И.П., Жуков А.В. Электромагнитная совместимость в электроэнергетике и электротехнике. М.: Энергоатомиздат, 2003.
5. Ott H.W. Electromagnetic Compatibility Engineering. N.-Y.: John Wiley&Sons, 2009.
6. Барнс Дж. Электронное конструирование: Методы борьбы с помехами. М.: Мир, 1990.
7. Кечиев Л.Н. Акбашев Б.Б. Степанов П.В. Экранирование технических средств и экранированные системы. М.: ООО «Группа ИДТ», 2010.
8. Кечиев Л.Н. Экранирование радиоэлектронной аппаратуры. М.: Гриффон, 2019.
9. Celozzi S, Araneo R., Lovat G. Electromagnatic Shielding. N.-Y.: John Wiley&Sons, 2008.
10. Morrison R. Grounding and Shielding. Circuits and Interference. N.-Y.: John Willey&Sons, 2007.
11. Shulz R.B., Plantz V.C., Drush D.R. Shielding Theore and Practice // IEEE Trans EMC. 1988. V. 30. No. 3. Pp. 187—201.
12. Жуков П.А., Марченко М.В., Кириллов В.Ю. Влияние переходного сопротивления на эффективность экранирования бортовой кабельной сети летательных атмосферных и космических аппаратов // Вестник МАИ. 2017. Т. 24. № 3. С. 121—126.
13. Жуков П.А. Кириллов В.Ю. Марченко М.В. Влияние способов соединения экранов кабеля с электрическим соединителем на эффективность экранирования // Вестник МЭИ. 2019. № 2. С. 50—56.
14. ГОСТ 19005—81. Средства обеспечения защиты изделий ракетной и ракетно-космической техники от статического электричества. Общие требования к металлизации и заземлению.
---
Для цитирования: Нгуен Ван Тай, Кириллов В.Ю. Перекрестные помехи в электрических жгутах с неоднородностями экранов // Вестник МЭИ. 2020. № 6. С. 76—81. DOI: 10.24160/1993-6982-2020-6-76-81.
#
1. Kirillov V.Yu., Marchenko M.V., Tomilin M.M. Elektromagnitnaya Sovmestimost' Bortovoy Kabel'noy Seti Letatel'nykh Apparatov. M.: Izd-vo MAI, 2014. (in Russian).
2. Uill'yams T. EMS dlya razrabotchikov Produktsii. M.: Izdat. Dom «Tekhnologii», 2003. (in Russian).
3. Uill'yams T., Armstrong K. EMS dlya Sistem i Ustanovok. M.: Izdat. Dom «Tekhnologii», 2004. (in Russian).
4. D'yakov A.F., Maksimov B.K., Borisov R.K., Kuzhekin I.P., Zhukov A.V. Elektromagnitnaya Sovmestimost' v Elektroenergetike i Elektrotekhnike. M.: Energoatomizdat, 2003. (in Russian).
5. Ott H.W. Electromagnetic Compatibility Engineering. N.-Y.: John Wiley&Sons, 2009.
6. Barns Dzh. Elektronnoe Konstruirovanie: Metody Bor'by s Pomekhami. M.: Mir, 1990. (in Russian).
7. Kechiev L.N. Akbashev B.B. Stepanov P.V. Ekranirovanie Tekhnicheskikh Sredstv i Ekranirovannye Sistemy. M.: OOO «Gruppa IDT», 2010. (in Russian).
8. Kechiev L.N. Ekranirovanie Radioelektronnoy Apparatury. M.: Griffon, 2019. (in Russian).
9. Celozzi S, Araneo R., Lovat G. Electromagnatic Shielding. N.-Y.: John Wiley&Sons, 2008.
10. Morrison R. Grounding and Shielding. Circuits and Interference. N.-Y.: John Willey&Sons, 2007.
11. Shulz R.B., Plantz V.C., Drush D.R. Shielding Theore and Practice. IEEE Trans EMC. 1988;30;3:187—201.
12. Zhukov P.A., Marchenko M.V., Kirillov V.Yu. Vliyanie Perekhodnogo Soprotivleniya na Effektivnost' Ekranirovaniya Bortovoy Kabel'noy Seti Letatel'nykh Atmosfernykh i Kosmicheskikh Apparatov. Vestnik MAI. 2017;24;3:121—126. (in Russian).
13. Zhukov P.A. Kirillov V.Yu. Marchenko M.V. Vliyanie Sposobov Soedineniya Ekranov Kabelya s Elektricheskim Soedinitelem na Effektivnost' Ekranirovaniya. Vestnik MEI. 2019;2:50—56. (in Russian).
14. GOST 19005—81. Sredstva Obespecheniya Zashchity Izdeliy Raketnoy i Raketno-kosmicheskoy Tekhniki ot Staticheskogo Elektrichestva. Obshchie Trebovaniya k Metallizatsii i Zazemleniyu. (in Russian).
---
For citation: Nguyen Van Tai, Kirillov V.Yu. Crosstalk in Electrical Wire Bundles with Shield Heterogeneities. Bulletin of MPEI. 2020;6:76—81. (in Russian). DOI: 10.24160/1993-6982-2020-6-76-81.

