Simulation of the Wind Turbine Yaw Control System
DOI:
https://doi.org/10.24160/1993-6982-2021-1-44-55Keywords:
wind energy conversion system, yaw system, horizontal axis wind turbineAbstract
Owing to its being an important component of renewable energy, wind energy is a kind of power generation method with the most mature, highly developed technologies and broad commercial prospects. The stable and efficient conversion of wind energy by wind turbines depends not only on the reliability of the wind power generation equipment itself, but also on the wind turbine control system, which, in turn, contributes to long-term safe and reliable operation of the wind farm fleet. It is exactly the wind turbine control system that is the main subject of this study. The key to efficient and stable operation of the entire wind energy conversion system is the control technology, which includes yaw control, pitch angle control, and maximum power point tracking control. The active yaw control system is one of the important components of a horizontal axis wind turbine's control system. To eliminate the uncertainty of wind direction influence on the turbine power output, a composite yaw control system has been checked. By using an active yaw system and maximum power point tracking system, the turbine position and its rotation speed are adjusted to enable the wind turbine to accurately track the wind direction and capture the wind energy to the fullest extent.
References
2. Manwell J.F. e. a. Wind Energy Explained: Theory, Design and Application. Chichester: Wiley and sons, 2010.
3. Vargas S.A. e. a. Wind Power Generation: A Review and a Research Agenda // J. Clean. Prod. 2019. V. 218. Pp. 850—870.
4. Chehouri A., Younes R., Ilinca A., Perron J. Review of Performance Optimization Techniques Applied to Wind Turbines // Appl. Energy. 2015. V. 142. Pp. 361—388.
5. Gebraad P.M.O. e. a. Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects — A CFD Simulation Study // Wind Energy. 2016. V. 19. No. 1. Pp. 95—114.
6. Gebraad P., Thomas J.J., Ning A., Fleming P., Dykes K. Maximization of the Annual Energy Production of Wind Power Plants by Optimization of Layout and Yaw-based Wake Control // Wind Energy. 2017. V. 20. No. 1. Pp. 97—107.
7. Jeong M.-S., Kim, S.-W. Lee I., Yoo S.-J., Park K.C. The Impact of Yaw Error on Aeroelastic Characteristics of a Horizontal Axis Wind Turbine Blade // Renew. Energy. 2013. V. 60. Pp. 256—268.
8. De Zutter S., De Kooning J.D.M., Samani A.E., Baetens J., Vandevelde L. Modeling of Active Yaw Systems for Small and Medium Wind Turbines // Proc. 52nd Inter. Univ. Power Eng. Conf. 2017. V. 1. Pp. 1—6.
9. Kim M.-G., Dalhoff P.H. Yaw Systems for Wind Turbines — Overview of Concepts, Current Challenges and Design Methods // J. Physics: Conf. Series. 2014. V. 524. No. 1. P. 012086.
10. Dar Z., Kar K., Sahni O., Chow J.H. Windfarm Power Optimization Using Yaw Angle Control // IEEE Trans. Sustain. Energy. 2017. V. 8. No. 1. Pp. 104—116.
11. Dai J., Yang X., Hu W., Wen L., Tan Y. Effect Investigation of Yaw on Wind Turbine Performance Based on SCADA Data // Energy. 2018. V. 149. Pp. 684—696.
12. Karakasis N., Mesemanolis A., Nalmpantis T., Mademlis C. Active Yaw Control in a Horizontal Axis Wind System Without Requiring Wind Direction Measurement // IET Renew. Power Gener. 2016. V. 10. No. 9. Pp. 1441—1449.
13. Liang Yuanyuan, Zhao Qiaoe, Shen Xijun. Research on Power Control of Wind Power Generation Yaw System // J. Electr. Power. 2013. V. 28. No. 1. Pp. 50—53.
14. Mesemanolis A., Mademlis C. Combined Maximum Power Point and Yaw Control Strategy for a Horizontal Axis Wind Turbine // Proc. Intern. Conf. Electr. Mach. 2014. Pp. 1704—1710.
15. Tsioumas E., Karakasis N., Jabbour N., Mademlis C. Indirect Estimation of the Yaw-angle Misalignment in a Horizontal Axis Wind Turbine // Proc. IEEE XI Intern. Symp. Diagnostics Electr. Mach. Power Electron. Drives. 2017. V. 1. Pp. 45—51.
16. Kragh K.A., Fleming P.A., Scholbrock A.K. Increased Power Capture by Rotor Speed-Dependent Yaw Control of Wind Turbines // J. Sol. Energy Eng. Trans. 2013. V. 135. No. 3. Pp. 1—7.
17. Mikkelsen T. e. a. Lidar Wind Speed Measurements from a Rotating Spinner // Proc. European Wind Energy Conf. and Exhibition. 2010. V. 2. Pp. 1550—1557.
18. Sarkar M.R., Julai S., Tong C.W., Chao O.Z., Rahman M. Mathematical Modelling and Simulation of Induction Generator Based wind Turbine in Matlab/Simulink // J. Eng. Appl. Sci. 2015. V. 10. No. 22. Pp. 17276—17280.
19. Benchagra M., Hilal M., Errami Y., Ouassaid M., Maaroufi M. Modeling and Control of SCIG Based Variable-Speed with Power Factor Control. Int. Rev. Model. Simulations. 2011. V. 4. No. 3. Pp. 1007—1014.
20. Patel S.J., Jani H.B., Polytechnic G., Polytechnic G. Dynamic Modelling of the Three-phase Induction Motor Using Simulink // Sci. J. Impact Factor. 2015. V. 2. No. 3. Pp. 412—428.
21. Kalantar M., Mousavi G.S.M. Dynamic Behavior of a Stand-alone Hybrid Power Generation System of Wind Turbine, Microturbine, Solar Array and Battery Storage // Appl. Energy. 2010. V. 87. No. 10. Pp. 3051—3064.
22. Odhano S.A. e. a. Maximum Efficiency Per Torque Direct Flux Vector Control of Induction Motor Drives // IEEE Trans. Ind. Appl. 2015. V. 51. No. 6. Pp. 4415—4424.
23. Benchagra M., Maaroufi M., Ouassaid M. Study and Analysis on the Control of SCIG and Its Responses to Grid Voltage Unbalance // Proc. Intern. Conf. Multimed. Comput. Syst. 2011. Pp. 1—5.
24. Ji Z.C., Xue H., Shen Y.X. Modeling and Simulation of AC Asynchronism Motor Vector Control System Based on Matlab // J. Syst. Simul. 2004. V. 16. No. 3. P. 384.
---
Для цитирования: Юйсун Ян, Соломин Е.В., Рявкин Г.Н. Моделирование системы управления рысканием ветротурбины // Вестник МЭИ. 2021. № 1. С. 44—55.
#
1. Jacobson M.Z. Review of Solutions to Global Warming, Air Pollution, and Energy Security. Energy Environ. Sci. 2009;2;2:148—173.
2. Manwell J.F. e. a. Wind Energy Explained: Theory, Design and Application. Chichester: Wiley and sons, 2010.
3. Vargas S.A. e. a. Wind Power Generation: A Review and a Research Agenda. J. Clean. Prod. 2019;218:850—870.
4. Chehouri A., Younes R., Ilinca A., Perron J. Review of Performance Optimization Techniques Applied to Wind Turbines. Appl. Energy. 2015;142:361—388.
5. Gebraad P.M.O. e. a. Wind Plant Power Optimization Through Yaw Control Using a Parametric Model for Wake Effects — A CFD Simulation Study. Wind Energy. 2016;19;1:95—114.
6. Gebraad P., Thomas J.J., Ning A., Fleming P., Dykes K. Maximization of the Annual Energy Production of Wind Power Plants by Optimization of Layout and Yaw-based Wake Control. Wind Energy. 2017;20;1:97—107.
7. Jeong M.-S., Kim, S.-W. Lee I., Yoo S.-J., Park K.C. The Impact of Yaw Error on Aeroelastic Characteristics of a Horizontal Axis Wind Turbine Blade. Renew. Energy. 2013;60:256—268.
8. De Zutter S., De Kooning J.D.M., Samani A.E., Baetens J., Vandevelde L. Modeling of Active Yaw Systems for Small and Medium Wind Turbines. Proc. 52nd Inter. Univ. Power Eng. Conf. 2017;1:1—6.
9. Kim M.-G., Dalhoff P.H. Yaw Systems for Wind Turbines — Overview of Concepts, Current Challenges and Design Methods. J. Physics: Conf. Series. 2014;524;1:012086.
10. Dar Z., Kar K., Sahni O., Chow J.H. Windfarm Power Optimization Using Yaw Angle Control. IEEE Trans. Sustain. Energy. 2017;8;1:104—116.
11. Dai J., Yang X., Hu W., Wen L., Tan Y. Effect Investigation of Yaw on Wind Turbine Performance Based on SCADA Data. Energy. 2018;149:684—696.
12. Karakasis N., Mesemanolis A., Nalmpantis T., Mademlis C. Active Yaw Control in a Horizontal Axis Wind System Without Requiring Wind Direction Measurement. IET Renew. Power Gener. 2016;10;9:1441—1449.
13. Liang Yuanyuan, Zhao Qiaoe, Shen Xijun. Research on Power Control of Wind Power Generation Yaw System. J. Electr. Power. 2013;28;1:50—53.
14. Mesemanolis A., Mademlis C. Combined Maximum Power Point and Yaw Control Strategy for a Horizontal Axis Wind Turbine. Proc. Intern. Conf. Electr. Mach. 2014:1704—1710.
15. Tsioumas E., Karakasis N., Jabbour N., Mademlis C. Indirect Estimation of the Yaw-angle Misalignment in a Horizontal Axis Wind Turbine. Proc. IEEE XI Intern. Symp. Diagnostics Electr. Mach. Power Electron. Drives. 2017;1:45—51.
16. Kragh K.A., Fleming P.A., Scholbrock A.K. Increased Power Capture by Rotor Speed-Dependent Yaw Control of Wind Turbines. J. Sol. Energy Eng. Trans. 2013;135;3:1—7.
17. Mikkelsen T. e. a. Lidar Wind Speed Measurements from a Rotating Spinner. Proc. European Wind Energy Conf. and Exhibition. 2010;2:1550—1557.
18. Sarkar M.R., Julai S., Tong C.W., Chao O.Z., Rahman M. Mathematical Modelling and Simulation of Induction Generator Based wind Turbine in Matlab/Simulink. J. Eng. Appl. Sci. 2015;10;22:17276—17280.
19. Benchagra M., Hilal M., Errami Y., Ouassaid M., Maaroufi M. Modeling and Control of SCIG Based Variable-Speed with Power Factor Control. Int. Rev. Model. Simulations. 2011;4;3:1007—1014.
20. Patel S.J., Jani H.B., Polytechnic G., Polytechnic G. Dynamic Modelling of the Three-phase Induction Motor Using Simulink. Sci. J. Impact Factor. 2015;2;3:412—428.
21. Kalantar M., Mousavi G.S.M. Dynamic Behavior of a Stand-alone Hybrid Power Generation System of Wind Turbine, Microturbine, Solar Array and Battery Storage. Appl. Energy. 2010;87;10:3051—3064.
22. Odhano S.A. e. a. Maximum Efficiency Per Torque Direct Flux Vector Control of Induction Motor Drives. IEEE Trans. Ind. Appl. 2015;51;6:4415—4424.
23. Benchagra M., Maaroufi M., Ouassaid M. Study and Analysis on the Control of SCIG and Its Responses to Grid Voltage Unbalance. Proc. Intern. Conf. Multimed. Comput. Syst. 2011:1—5.
24. Ji Z.C., Xue H., Shen Y.X. Modeling and Simulation of AC Asynchronism Motor Vector Control System Based on Matlab. J. Syst. Simul. 2004;16;3:384.
---
For citation: Yusong Y., Solomin E.V., Ryavkin G.N. Simulation of the Wind Turbine Yaw Control System. Bulletin of MPEI. 2021;1:44—55.
---
The work is executed at support: The presented research was funded by Russian Foundation for Basic Research, Agreement RFBR No. 19-08-00070 "Theoretical justification and experimental studies of a new method of yaw control of the rotor of a horizontal axis wind turbine" on the base of Project-Training Education at South Ural State University (National research university).

