Analysis of Foreign Experience in Using Flue Gas Purification Systems at Waste-to-Energy Plants
DOI:
https://doi.org/10.24160/1993-6982-2021-2-11-19Keywords:
waste-to-energy plant, waste thermal recycling, gas purification efficiency, acid gas removal, waste-to-energy plant environmental performance indicatorsAbstract
The existing method for selecting the structure of a power plant for thermally recycling municipal solid waste (MSW) in the Russian Federation does not address the matter of selecting all components of an energy complex operating on MSW, but places focus on determining the best accessible waste thermal neutralization technology. This generates the need to search for new methods and to select criteria of choosing the structure for each particular project.
A comparative analysis of various structural schemes of waste-to-energy plants widely used outside of Russia will make it possible to reveal their main advantages and drawbacks, and to determine their application fields.
The article describes the statistical indicators characterizing the operation of the flue gas purification system from acid gases, which can be applied in performing a feasibility study, intellectual property assessment, and in carrying out front-end engineering.
For waste-to-energy plants constructed in an urban environment and aimed to operate with keeping to a minimum the gross emissions of acid gases into the atmospheric air, the use of a wet reactor system is recommended, which will ensure low emissions of HF, HCl, and SOx. The system with a wet reactor will make it possible to reduce gross emissions of harmful substances during the operation of large capacity waste-to-energy power plants and will be a justified choice in such case.
In constructing medium capacity waste-to-energy plants (with a throughput of up to 350 000 t of MSW per annum), semi-dry and dry reactors can be used; for such plants, the technology involving the use of a semi-dry reactor is the most preferred one.
References
2. Информационно-технический справочник по наилучшим доступным технологиям. Обезвреживание отходов термическим способом (сжигание отходов). М.: Федеральное агентство по техническому регулированию и метрологии, 2015.
3. Дыган М.М. Экологическая безопасность мусоросжигательных заводов при переменной мощности по сжиганию твердых бытовых отходов: автореф. дис. … канд. техн. наук. М., 2012.
4. Тугов А.Н. Исследование процессов и технологий энергетической утилизации бытовых отходов для разработки отечественной ТЭС на ТБО: автореф. дис. … канд. техн. наук. М., 2012.
5. Тугов А.Н., Тумановский А.Г., Москвичев В.Ф. Опыт ВТИ по сжиганию твердых бытовых отходов в слоевых топках // Горение твердого топлива: Материалы VIII Всеросс. конф. М.: Институт теплофизики СО РАН, 2012. С. 98.1—98.86.
6. Wood S. e. a. Review of State-of-the-Art Waste-to-Energy Technologies. Stage Two — Case Studies. Perth: Waste Management Branch, 2013.
7. Warren K. e. a. Waste to Energy Background Paper. Morrison Hershfield Ltd, 2013.
8. Neuwahl F.G.C. Best Available Techniques (BAT) Reference Document for Waste Incineration. Joint Research Centre, 2019.
9. Тугов А.Г. Предварительная оценка содержания серы и хлора в исходном ТБО (ТЛ-1 спецзавод № 4 «Руднево»). М.: ОАО «ВТИ», 2004.
10. Kushiro Association of Waste Incineration Facilities. Mitsubishi HI, Kushiro, 2017
11. Waste to energy. Necessity and Expected effects of Waste to Energy Business. Busan: Posco Energy, 2015.
---
Для цитирования: Ефремов А.Н., Дудолин А.А. Анализ зарубежного опыта применения систем газоочистки тепловых электрических станций на твердых коммунальных отходах // Вестник МЭИ. 2021. № 2. С. 11—19. DOI: 10.24160/1993-6982-2021-2-11-19.
#
1. Territorial'naya Skhema Obrashcheniya s Otkhodami, v Tom Chisle s Tverdymi Kommunal'nymi Otkhodami Moskovskoy Oblasti. Krasnogorsk, 2016. (in Russian).
2. Informatsionno-tekhnicheskiy Spravochnik po Nailuchshim Dostupnym Tekhnologiyam. Obezvrezhivanie Otkhodov Termicheskim Sposobom (Szhiganie Otkhodov). M.: Federal'noe Agentstvo po Tekhnicheskomu Regulirovaniyu i Metrologii, 2015. (in Russian).
3. Dygan M.M. Ekologicheskaya Bezopasnost' Musoroszhigatel'nykh Zavodov pri Peremennoy Moshchnosti po Szhiganiyu Tverdykh Bytovykh Otkhodov: Avtoref. Dis. … Kand. Tekhn. Nauk. M., 2012. (in Russian).
4. Tugov A.N. Issledovanie Protsessov i Tekhnologiy Energeticheskoy Utilizatsii Bytovykh Otkhodov dlya Razrabotki Otechestvennoy TES na TBO: Avtoref. Dis. … Kand. Tekhn. Nauk. M., 2012. (in Russian).
5. Tugov A.N., Tumanovskiy A.G., Moskvichev V.F. Opyt VTI po Szhiganiyu Tverdykh Bytovykh Otkhodov v Sloevykh Topkakh. Gorenie Tverdogo Topliva: Materialy VIII Vseross. Konf. M.: Institut Teplofiziki SO RAN, 2012:98.1—98.86. (in Russian).
6. Wood S. e. a. Review of State-of-the-Art Waste-to-Energy Technologies. Stage Two — Case Studies. Perth: Waste Management Branch, 2013.
7. Warren K. e. a. Waste to Energy Background Paper. Morrison Hershfield Ltd, 2013.
8. Neuwahl F.G.C. Best Available Techniques (BAT) Reference Document for Waste Incineration. Joint Research Centre, 2019.
9. Tugov A.G. Predvaritel'naya Otsenka Soderzhaniya Sery i Khlora v Iskhodnom TBO (TL-1 Spetszavod № 4 «Rudnevo»). M.: OAO «VTI», 2004. (in Russian).
10. Kushiro Association of Waste Incineration Facilities. Mitsubishi HI, Kushiro, 2017
11. Waste to energy. Necessity and Expected effects of Waste to Energy Business. Busan: Posco Energy, 2015.
---
For citation: Efremov A.N., Dudolin A.A. Analysis of Foreign Experience in Using Flue Gas Purification Systems at Waste-to-Energy Plants. Bulletin of MPEI. 2021;2:11—19. (in Russian). DOI: 10.24160/1993-6982-2021-2-11-19.

