Assessment of the Dynamic Loads Applied to the RBMK-1000 Subreactor Room Walls and Slab during Vapor Explosion

Authors

  • Алексей [Aleksey] Михайлович [M.] Осипов [Osipov]
  • Александр [Aleksandr] Валерьевич [V.] Рябов [Ryabov]
  • Дарья [Darya] Владимировна [V.] Финошкина [Finoshkina]

DOI:

https://doi.org/10.24160/1993-6982-2021-2-29-36

Keywords:

vapor explosion, corium, core, conversion ratio, RBMK-1000

Abstract

One of the conditions for the safe operation of a nuclear power plant (NPP) unit is a comprehensive design and experimental justification of its failure-free operation in all operating modes and limitation of accident radiation consequences, including those in the case of severe beyond design basis accidents.

According to the nuclear power industry development plans in Russia, new NPPs equipped with RBMK-1000 reactors are not supposed to be constructed in the future. Although the assigned service life of RBMK-1000 based power units that remain in operation is close to expiration, these power units account for most of the electricity generation in the total amount of nuclear power capacities in Russia (about 40%); therefore, the relevant industry organizations have decided to extend their operation.

This article analyzes the severe accident evolvement scenario at an RBMK-based NPP during the stage of severe core damage, in the course of which fuel-containing masses collapse into the subreactor space filled with water.

Once fuel-containing masses emerge in the sub-reactor room, they come in interaction with the reactor base concrete. There is a potential danger of the concrete floor slab melting and the corium collapsing into the bubbler pool water. The main strategy foreseen for keeping the molten core within the reactor space boundaries involves decay heat removal from the reactor and cooling of the support metal structures by supplying water. However, the filling of the subreactor space with liquid may give rise to conditions under which vapor explosion can occur.

The maximum dynamic impact applied to the RBMK-1000 subreactor room walls in the event of possible interaction between the molten corium and water during a severe beyond design basis accident is estimated.

It is shown that when the corium melt interacts with a large amount of water in the subreactor room, the kinetic energy of the resulting water vapor is sufficient to cause significant destruction of the power unit building. When the water level in the subreactor room falls below one meter, the destruction hazard becomes less probable. The mass of hydrogen released as a result of the interaction is also estimated.

Author Biographies

Алексей [Aleksey] Михайлович [M.] Осипов [Osipov]

Head of Department of NRC «Kurchatov Institute», e-mail: Osipov_AM@nrcki.ru

Александр [Aleksandr] Валерьевич [V.] Рябов [Ryabov]

Senior Researcher of NRC «Kurchatov Institute», e-mail: Ryabov_AV@nrcki.ru

Дарья [Darya] Владимировна [V.] Финошкина [Finoshkina]

Laboratory Research Assistant of NRC «Kurchatov Institute», e-mail: Finoshkina_DV@nrcki.ru

References

1. Fletcher D.F. An Improved Mathematical Model of Melt/Water Detonations. I. Model Formulation and Example Results // Int. J. Heat Mass Transfer. 1991. V. 34. Pp. 2435—2448.
2. Fletcher D.F. An Improved Mathematical Model of Melt/Water Detonations. II. A Study of Escalation // Int. J. Heat Mass Transfer. 1991. V. 34. Pp. 2449—2459.
3. Fletcher D.F. Propagation Investigations Using the CULDESAC Model. Proc. CSNI Specialist Meeting on Fuel-coolant Interactions // Nuclear Eng. and Design. 1995. V. 155. Iss. 1—2. Pp. 271—287.
4. Tang J., Corradini M.L. Modelling of the One-Dimensional Vapor Explosions // Proc. VI Intern. Topical Meeting on Nuclear Reactor Thermal Hydraulics. Grenoble, 1993. V. 1. P. 107.
5. Yuen W.W., Theofanous T.G. The Prediction of 2D Thermal Detonation and Resulting Damage Potential // Nuclear Eng. and Design. 1995. V. 155. Iss. 1—2. Pp. 289—309.
6. Chen X., Yuen W.W., Theofanous T.G. On the Constitutive Description of the Microinteractions Concept in Steam Explosions // Proc. 7th Intern. Meeting on Nuclear Reactor Thermal-Hydraulics. 1995. V. 3. Pp. 1586—1606.
7. Corradini ML., Tang J., Shamonn В., Nilsuwankosit S. TEXAS-V: A Fuel-coolant Interaction Model. Heat and Mass Transfer in Severe Nuclear Reactor Accidents. Begell House Inc. N.-Y., 1996.
8. Annunziato A., Yerkess A., Addabbo С. FARO and KROTOS Code Simulation and Analysis at JRC Ispra // Nuclear Eng. and Design. 1999. V. 189. Iss. 1—3. Pp. 359—378.
9. Speis P.T., Basu S. Fuel-Coolant Interaction (FCI) Phenomena in Reactor Safety: Current Understanding and Future Research Needs // Proc. OECD/CSNI Specialists Meeting on Fuel-coolant Interactions. Tokai-Mura, 1997. Pp. 19—24.
10. Magallon D., Huhtiniem I., Hohmann H. Lessons Learnt from FARO/TERMOS Corium Melt Quenching Experiments // Nuclear Eng. and Design. 1999. V. 189. Iss. 1—3. Pp. 233—238.
11. Magallon D., Huhtiniem I. Corium Melt Quenching Tests at Low Pressure and Subcooled Conditions in FARO // Nuclear Eng. and Design. 2001. V. 204. Pp. 369—376.
12. Мелихов В.И., Мелихов О.И., Соколин А.В. Взрывное взаимодействие расплава с водой. Моделирование кодом VAPEX-D // Теплофизика высоких температур. 2002. Т. 40. № 3. С. 466—474.
13. Мелихов В.И., Мелихов О.И., Парфенов Ю.В., Соколин А.В. Анализ эксперимента по взаимодействию расплава с охладителем на установке FARO с помощью кода VAPEX // Атомная энергия. 2002. Т. 92. № 2. С. 91—95.
14. Мелихов В.И., Мелихов О.И., Якуш С.Е. Анализ крупномасштабных экспериментов по взаимодействию кориума с водой с помощью кода VAPEX // Теплофизика высоких температур. 2007. Т. 45. № 4. С. 565—574.
15. Блинков В.Н. и др. Определение динамических нагрузок на контейнмент при внекорпусном паровом взрыве на АЭС с ВВЭР // Технические науки. Фундаментальные исследования. 2012. № 9. С. 889—893.
16. Мелихов В.И., Мелихов О.И., Ртищев Н.А., Тарасов А.Е. Разработка и валидация модели термического взаимодействия высокотемпературного расплава с натрием // Тепловые процессы в технике. 2015. Т. 7. № 6. С. 250—257.
17. Мелихов В.И., Мелихов О.И., Парфенов Ю.В., Ртищев Н.А., Боровкова Е.М. Оценка ударного воздействия на корпус реактора вследствие внутрикорпусного парового взрыва // Вестник МЭИ. 2012. № 2. С. 50—57.
18. Степанов Е.В. Физические аспекты явления парового взрыва. М.: ИАЭ, 1991.
19. Мелихов В.И., Мелихов О.И., Парфенов Ю.В. Численное моделирование процесса предварительного перемешивания струи расплава активной зоны с помощью кода VAPEX-P // Теплоэнергетика. 2003. № 11. С. 35—39.
20. Абрамов М.И. и др. Канальный ядерный энергетический реактор. М.: НИКИЭТ, 2006.
21. Буланов Н.В. Взрывное вскипание диспергированных жидкостей. Екатеринбург: Изд-во УрГУПС, 2011.
22. Мелихов В.И., Мелихов О.И., Тарасов А.Е. Формирование, распространение и отражение от стенки сосуда волны термической детонации // Вестник МЭИ. 2016. № 5. С. 49—56.
23. Гудеменко Д.В., Мелихов В.И., Мелихов О.И. Исследование термической детонации на основе модели микровзаимодействий // Вестник МЭИ. 2017. № 2. С. 32—39.
---
Для цитирования: Осипов А.М., Рябов А.В., Финошкина Д.В. Оценка динамических нагрузок на стены и перекрытие подреакторного помещения РБМК-1000 при паровом взрыве // Вестник МЭИ. 2021. № 2. С. 29—36. DOI: 10.24160/1993-6982-2021-2-29-36.
#
1. Fletcher D.F. An Improved Mathematical Model of Melt/Water Detonations. I. Model Formulation and Example Results. Int. J. Heat Mass Transfer. 1991;34:2435—2448.
2. Fletcher D.F. An Improved Mathematical Model of Melt/Water Detonations. II. A Study of Escalation. Int. J. Heat Mass Transfer. 1991;34:2449—2459.
3. Fletcher D.F. Propagation Investigations Using the CULDESAC Model. Proc. CSNI Specialist Meeting on Fuel-coolant Interactions. Nuclear Eng. and Design. 1995;155;1—2:271—287.
4. Tang J., Corradini M.L. Modelling of the One-Dimensional Vapor Explosions. Proc. VI Intern. Topical Meeting on Nuclear Reactor Thermal Hydraulics. Grenoble, 1993;1:107.
5. Yuen W.W., Theofanous T.G. The Prediction of 2D Thermal Detonation and Resulting Damage Potential. Nuclear Eng. and Design. 1995;155;1—2:289—309.
6. Chen X., Yuen W.W., Theofanous T.G. On the Constitutive Description of the Microinteractions Concept in Steam Explosions. Proc. 7th Intern. Meeting on Nuclear Reactor Thermal-Hydraulics. 1995;3:1586—1606.
7. Corradini ML., Tang J., Shamonn B., Nilsuwankosit S. TEXAS-V: A Fuel-coolant Interaction Model. Heat and Mass Transfer in Severe Nuclear Reactor Accidents. Begell House Inc. N.-Y., 1996.
8. Annunziato A., Yerkess A., Addabbo C. FARO and KROTOS Code Simulation and Analysis at JRC Ispra. Nuclear Eng. and Design. 1999;189;1—3:359—378.
9. Speis P.T., Basu S. Fuel-Coolant Interaction (FCI) Phenomena in Reactor Safety: Current Understanding and Future Research Needs. Proc. OECD/CSNI Specialists Meeting on Fuel-coolant Interactions. Tokai-Mura, 1997:19—24.
10. Magallon D., Huhtiniem I., Hohmann H. Lessons Learnt from FARO/TERMOS Corium Melt Quenching Experiments. Nuclear Eng. and Design. 1999;189;1—3:233—238.
11. Magallon D., Huhtiniem I. Corium Melt Quenching Tests at Low Pressure and Subcooled Conditions in FARO. Nuclear Eng. and Design. 2001;204:369—376.
12. Melikhov V.I., Melikhov O.I., Sokolin A.V. Vzryvnoe Vzaimodeystvie Rasplava s Vodoy. Modelirovanie Kodom VAPEX-D. Teplofizika Vysokikh Temperatur. 2002;40;3:466—474. (in Russian).
13. Melikhov V.I., Melikhov O.I., Parfenov Yu.V., Sokolin A.V. Analiz Eksperimenta po Vzaimodeystviyu Rasplava s Okhladitelem na Ustanovke FARO s Pomoshch'yu Koda VAPEX. Atomnaya Energiya. 2002;92;2:91—95. (in Russian).
14. Melikhov V.I., Melikhov O.I., Yakush S.E. Analiz Krupnomasshtabnykh Eksperimentov po Vzaimodeystviyu Koriuma s Vodoy s Pomoshch'yu Koda VAPEX. Teplofizika Vysokikh Temperatur. 2007;45;4:565—574. (in Russian).
15. Blinkov V.N. i dr. Opredelenie Dinamicheskikh Nagruzok na Konteynment pri Vnekorpusnom Parovom Vzryve na AES s VVER. Tekhnicheskie Nauki. Fundamental'nye Issledovaniya. 2012;9:889—893. (in Russian).
16. Melikhov V.I., Melikhov O.I., Rtishchev N.A., Tarasov A.E. Razrabotka i Validatsiya Modeli Termicheskogo Vzaimodeystviya Vysokotemperaturnogo Rasplava s Natriem. Teplovye Protsessy v Tekhnike. 2015;7;6:250—257. (in Russian).
17. Melikhov V.I., Melikhov O.I., Parfenov Yu.V., Rtishchev N.A., Borovkova E.M. Otsenka Udarnogo Vozdeystviya na Korpus Reaktora Vsledstvie Vnutrikorpusnogo Parovogo Vzryva. Vestnik MEI. 2012;2;50—57. (in Russian).
18. Stepanov E.V. Fizicheskie Aspekty Yavleniya Parovogo Vzryva. M.: IAE, 1991. (in Russian).
19. Melikhov V.I., Melikhov O.I., Parfenov Yu.V. Chislennoe Modelirovanie Protsessa Predvaritel'nogo Peremeshivaniya Strui Rasplava Aktivnoy Zony s Pomoshch'yu Koda VAPEX-P. Teploenergetika. 2003;11:35—39. (in Russian).
20. Abramov M.I. i dr. Kanal'nyy Yadernyy Energeticheskiy Reaktor. M.: NIKIET, 2006. (in Russian).
21. Bulanov N.V. Vzryvnoe Vskipanie Dispergirovannykh Zhidkostey. Ekaterinburg: Izd-vo UrGUPS, 2011. (in Russian).
22. Melikhov V.I., Melikhov O.I., Tarasov A.E. Formirovanie, Rasprostranenie i Otrazhenie ot Stenki Sosuda Volny Termicheskoy Detonatsii. Vestnik MEI. 2016;5:49—56. (in Russian).
23. Gudemenko D.V., Melikhov V.I., Melikhov O.I. Issledovanie Termicheskoy Detonatsii na Osnove Modeli Mikrovzaimodeystviy. Vestnik MEI. 2017;2:32—39. (in Russian).
---
For citation: Osipov A.M., Ryabov A.V., Finoshkina D.V. Assessment of the Dynamic Loads Applied to the RBMK-1000 Subreactor Room Walls and Slab during Vapor Explosion. Bulletin of MPEI. 2021;2:29—36. (in Russian). DOI: 10.24160/1993-6982-2021-2-29-36.

Published

2019-09-25

Issue

Section

Nuclear Power Plants, Including Design, Operation and Decommissioning (05.14.03)