An Adaptive Power Controller of the Induction Crucible Furnace with a Conducting Ferromagnetic Crucible
DOI:
https://doi.org/10.24160/1993-6982-2021-2-76-87Keywords:
induction crucible furnace, ferromagnetic conducting crucible, adaptive power controller, structural model, control system, pulse-frequency modulation, control channelAbstract
A structural model of a high-frequency induction crucible furnace with a conducting ferromagnetic crucible is developed in the Simulink/Matlab environment based on investigations carried out by the authors.
The inductor current was calculated using the inductor's resistance and inductance dependences on temperature, frequency, and current.
An induction crucible furnace power control system structural model is designed based on the developed model. The output voltage pulse-frequency modulation is used as a furnace power control method.
An adaptive power controller for the induction crucible furnace with a conducting ferromagnetic crucible is developed, which includes two channels for control of the power supply source frequency and voltage.
It has been determined that the melting with the lowest energy expenditures is obtained in the case of using a power controller with two different adaptive control structures. The controller operates based on the frequency control principle and uses structures depending on the current temperature value.
The use of the adaptive power controller with two control channels can significantly reduce the specific electric energy consumption in comparison with automatic frequency adjustment, in particular, by a factor of 1.45 for the IGT-1.6M industrial furnace.
References
2. Ivanov A.N., Bukanin V.A., Zenkov A.E. Investigation of Induction Melting in Graphite Crucibles // Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Eng. 2020. Pp. 1234—1237.
3. Lopukh D.B., Vavilov A.V., Martynov A.P., Skrigan I.N. Measurement System of Electric Parameters of the Induction Coil for Induction Melting in a Cold Crucible // Ibid. Pp. 734—737.
4. Ivanov A.N., Bukanin V.A., Zenkov A.E. Simulation of Induction Heating Processes in ICF eltA // Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Eng. 2019. Pp. 981—984.
5. Федин М.А., Кувалдин А.Б., Кулешов А.О., Ахметьянов С.В., Кондрашов С.С. Электротепловая модель и режимы работы индукционной тигельной печи с проводящим тиглем // Вестник МЭИ. 2019. № 5. С. 91—100.
6. Levshin G.E. Ways to Improve Induction Crucible Furnares // Izvestiya Ferrous Metallurgy. 2019. V. 62(2). Pp. 97—102.
7. Бондаренко Д.П., Дзлиев С.В., Патанов Д.А. Коммутационные процессы в транзисторных инверторах для индукционного нагрева // Известия ТЭТУ. 1996. Вып. 497. С. 98—110.
8. Лебедев А.В. Выбор источников питания для индукционного нагрева. Саранск: Изд. дом МГУ им. Н.П. Огарева, 2015.
9. Лавлесс Д.Л., Кук Р.Л., Руднев В.И. Характеристики и параметры источников питания для эффективного индукционного нагрева // Силовая электроника. 2007. № 1. С. 94—98.
10. Федин М.А. Выбор принципа регулирования и разработка систем управления индукционных тигельных печей с проводящим тиглем // Индукционный нагрев. 2014. № 1(27). С. 24—28.
11. Alekseeva M.M., Artyukhov I.I., Alekseev V.S. Engineering Calculation of Induction Crucible Furnace with MATLAB/Simulink // Proc. V Intern. Conf. Information Technologies in Engineering Education [Электрон. ресурс] www.inforino.mpei.ru/online/Pages/default.aspx (дата обращения 24.06.2020).
12. Hrbek J., Ebel W. Mathematical Model to Design Experiment Arrangement of Induction Furnace with Cold Crucible // Proc. X Intern. Sci. Symp. Electrical Power Eng. 2019. Pp. 499—503.
13. Shcherba M.A. Three-dimensional Modeling of Electromagnetic and Temperature Fields in the Inductor of Channel-tipe Furnace for Copper Heating // IEEE I Ukraine Conf. Electrical and Computer Eng. 2017. Pp. 427—431.
14. Zolotarev V.M., Shcherba M.A., Zolotarev V.V., Belyanin R.V. Three-dimensional Modeling of Electromagnetic and Thermal Processes of Induction Melting of Copper Template with Accounting of Installation Elements Design // Techn. Electrodynamics. 2017. V. 3. Pp. 13—21.
15. Lavers J.D. State of the Art of Numerical Modeling for Induction Processes // Intern. J. Computation and Mathematics in Electrical and Electronic Eng. 2018. V. 27(2). Pp. 335—349.
16. Федин М.А. и др. Разработка регулятора мощности индукционной тигельной печи промышленной частоты для плавки магния // Труды Междунар. конф. молодых специалистов по микро- и нанотехнологиям и электронным устройствам. Новосибирск, 2018. С. 302—304.
---
Для цитирования: Федин М.А., Кувалдин А.Б., Кулешов А.О., Ахметьянов С.В., Кондрашов С.С. Адаптивный регулятор мощнос-ти индукционной тигельной печи с проводящим ферромагнитным тиглем // Вестник МЭИ. 2021. № 2. С. 76—87. DOI: 10.24160/1993-6982-2021-2-76-87
---
Работа выполнена при поддержке: Министерства науки и высшего образования Российской Федерации (инициативный научный проект № 8.9608.2017/БЧ)
#
1. Yilmaz I., Ermiş M., Çadirci I. Medium Frequency Induction Melting Furnace as a Load on the Power System. Proc. 46th IEEE Industry Appl. Soc. Annual Meeting. 2011;48(4):1—12.
2. Ivanov A.N., Bukanin V.A., Zenkov A.E. Investigation of Induction Melting in Graphite Crucibles. Proc. IEEE Conf. Russian Young Researchers in Electrical and Electronic Eng. 2020:1234—1237.
3. Lopukh D.B., Vavilov A.V., Martynov A.P., Skrigan I.N. Measurement System of Electric Parameters of the Induction Coil for Induction Melting in a Cold Crucible. Ibid:734—737.
4. Ivanov A.N., Bukanin V.A., Zenkov A.E. Simulation of Induction Heating Processes in ICF eltA. Proc. IEEE Conf. of Russian Young Researchers in Electrical and Electronic Eng. 2019:981—984.
5. Fedin M.A., Kuvaldin A.B., Kuleshov A.O., Akhmet'yanov S.V., Kondrashov S.S. Elektroteplovaya Model' i Rezhimy Raboty Induktsionnoy Tigel'noy Pechi s Provodyashchim Tiglem. Vestnik MEI. 2019;5:91—100. (in Russian).
6. Levshin G.E. Ways to Improve Induction Crucible Furnares. Izvestiya Ferrous Metallurgy. 2019;62(2):97—102.
7. Bondarenko D.P., Dzliev S.V., Patanov D.A. Kommutatsionnye Protsessy v Tranzistornykh Invertorakh dlya Induktsionnogo Nagreva // Izvestiya TETU. 1996;497:98—110. (in Russian).
8. Lebedev A.V. Vybor Istochnikov Pitaniya dlya Induktsionnogo Nagreva. Saransk: Izd. Dom MGU im. N.P. Ogareva, 2015. (in Russian).
9. Lavless D.L., Kuk R.L., Rudnev V.I. Kharakteristiki i Parametry Istochnikov Pitaniya dlya Effektivnogo Induktsionnogo Nagreva. Silovaya Elektronika. 2007;1:94—98. (in Russian).
10. Fedin M.A. Vybor Printsipa Regulirovaniya i Razrabotka Sistem Upravleniya Induktsionnykh Tigel'nykh Pechey s Provodyashchim Tiglem. Induktsionnyy Nagrev. 2014;1(27):24—28. (in Russian).
11. Alekseeva M.M., Artyukhov I.I., Alekseev V.S. Engineering Calculation of Induction Crucible Furnace with MATLAB/Simulink. Proc. V Intern. Conf. Information Technologies in Engineering Education [Elektron. Resurs] www.inforino.mpei.ru/online/Pages/default.aspx (Data Obrashcheniya 24.06.2020).
12. Hrbek J., Ebel W. Mathematical Model to Design Experiment Arrangement of Induction Furnace with Cold Crucible. Proc. X Intern. Sci. Symp. Electrical Power Eng. 2019:499—503.
13. Shcherba M.A. Three-dimensional Modeling of Electromagnetic and Temperature Fields in the Inductor of Channel-tipe Furnace for Copper Heating. IEEE I Ukraine Conf. Electrical and Computer Eng. 2017:427—431.
14. Zolotarev V.M., Shcherba M.A., Zolotarev V.V., Belyanin R.V. Three-dimensional Modeling of Electromagnetic and Thermal Processes of Induction Melting of Copper Template with Accounting of Installation Elements Design. Techn. Electrodynamics. 2017;3:13—21.
15. Lavers J.D. State of the Art of Numerical Modeling for Induction Processes. Intern. J. Computation and Mathematics in Electrical and Electronic Eng. 2018;27(2):335—349.
16. Fedin M.A. i dr. Razrabotka Regulyatora Moshchnosti Induktsionnoy Tigel'noy Pechi Promyshlennoy Chastoty dlya Plavki Magniya. Trudy Mezhdunar. Konf. Molodykh Spetsialistov po Mikro- i Nanotekhnologiyam i Elektronnym Ustroystvam. Novosibirsk, 2018:302—304. (in Russian).
---
For citation: Fedin M.A., Kuvaldin A.B., Kuleshov A.O., Akhmetyanov S.V., Kondrashov S.S. An Adaptive Power Controller of the Induction Crucible Furnace with a Conducting Ferromagnetic Crucible. Bulletin of MPEI. 2021;2:76—87. (in Russian). DOI: 10.24160/1993-6982-2021-2-76-87.
---
The work is executed at support: Ministry of Science and Higher Education of the Russian Federation (Initiative Research Project No. 8.9608.2017/БЧ)

