The Mathematical Model of an Electrodynamic Geophone
DOI:
https://doi.org/10.24160/1993-6982-2021-3-33-40Keywords:
amplitude-frequency response, mathematical model, electrodynamic geophoneAbstract
Electrodynamic geophones are applied in seismic prospecting, seismology and security systems. Devices with a similar design can be used as a generator in devices for energy storage, in active vibration control systems, and for detection of shallow-buried objects, including mines. To control the quality of geophones and verify the constancy of their characteristics during the manufacture, it is necessary to measure their frequency response on a shake table. The mathematical model of the geophone developed by JSC Scientific Research Engineering Institute (Balashikha, Moscow region) installed on a shake table is considered. The geophone schematic design is given, and the sequence of its operation is described.
The approach of dividing an electromechanical system into several subsystems with subsequently uniting them into a resulting model is used for developing the geophone overall mathematical model. Detailed descriptions of the electrical, magnetic, and mechanical subsystems are presented. The assumptions used in compiling the overall mathematical model describing the geophone operation on the shake table are listed. A system of equations describing the interaction of the subsystems is compiled. Detailed descriptions of the resulting mathematical model, each of its element, and the interface included in its composition are presented.
To estimate the developed mathematical model, the results obtained from the calculations on it are compared with the results from testing two experimental samples in the geophone operating frequency band from 10 to 100 Hz. For better clarity, the obtained results are compared in graphical form. The comparison has shown that the discrepancy between the results does not exceed 5% by the output signal amplitude.
From the viewpoint of practical implementation, the developed mathematical model can be used in designing new geophones with other parameters, for example, with another natural frequency, or with a higher value of the output signal. It can also be used to develop more complex mathematical models containing a geophone.
The accomplished study became a basis for elaborating a more complex mathematical model of a geophone with two natural frequencies in the operating band.
References
2. Belyakov A. Instruments for Measuring Noise Inside the Earth // Intern. J. Geophysics and Geochemistry. 2017. V. 4(6). Pp. 97—102.
3. Чистова Г.К. Модели и методы обработки сейсмических сигналов в системах распознавания. Пенза: Изд-во ПГУ, 2003.
4. Виноградов А.Е., Кухальский Н.Г. Расчет ЭДС на выходе индукционного сейсмоприемника при воздействии сейсмической волны Рэлея // Вестник БНТУ. 2008. № 4. С. 56—59.
5. Pakhomov A., Sicignano A., Sandy M., Goldburt T. Single and Three Axis Geophone: Footstep Detection with Bearing Estimation, Localization and Tracking // Unattended Ground Sensor Technol. and Appl. 2003. V. 5090. Pp. 155—161.
6. Аверьянов А.В., Глебова Г.М. Определение координат движущегося объекта сосредоточенной сейсмической системой наблюдения // Автометрия. 2014. № 4. С. 67—73.
7. Dal Bo L., Gardonio P. Energy Harvesting with Electromagnetic and Piezoelectric Seismic Transducers: Unified Theory and Experimental Validation // J. Sound and Vibration. 2018. V. 433. Pp. 385—424.
8. Glynne-Jones P., Tudor M.J., Beeby S.P., White N.M. An Electromagnetic, Vibration-powered Generator for Intelligent Sensor Systems // Sensors and Actuators. 2004. V. 110. Pp. 344—349.
9. Elliott S.J., Zilletti M. Scaling of Electromagnetic Transducers for Shunt Damping and Energy Harvesting // J. Sound and Vibration. 2014. V. 333. Pp. 2185—2195.
10. Loussert G. Magnetic Actuators for Active Powertrain Vibration Control // SAE Techn. Paper. Warrendale: SAE, 2017.
11. Muggleton J.M., Brennan M.J., Rogers C.D.F. Point Vibration Measurements for the Detection of Shallow-buried Objects // Tunnelling and Underground Space Technol. 2014. V. 39. Pp. 27—33.
12. Korman M.S., Duong D. V., Kalsbeck A.E. Electrodynamic Soil Plate Oscillator: Modeling Nonlinear Mesoscopic Elastic Behavior and Hysteresis in Nonlinear Acoustic Landmine Detection // AIP Conference Proc. 2015. Pp. 1—8.
13. Рыжов A.B. Электродинамические сейсмоприёмники. Тверь: Изд-во ГЕРС, 2009.
14. Пат. № 178065 РФ. Электродинамический сейсмоприемник с повышенной механической стойкостью / Н.Ю. Гаврюшин, И.А. Кандидатов, А.В. Попов // Бюл. изобрет. 2018. № 9.
15. Основы теории электрических аппаратов. СПб.: Лань, 2015.
16. COMSOL Multiphysics® [Офиц. сайт] www.comsol.com (дата обращения 19.08.2020).
17. AC/DC Module User's Guide. Stockholm: COMSOL Multiphysics®, 2017.
18. Иродов И.Е. Деривативное электронное издание на основе печатного издания: Электромагнетизм. Основные законы. М.: БИНОМ. Лаборатория знаний, 2014.
19. Gavryushin N., Dergachev P., Kurbatov P. Mathematical Model of the Electrodynamic Seismic Sensor with Two Mechanic Oscillation Circuits // Proc. 27th Intern. Workshop Electric Drives: MPEI Department of Electric Drives 90th Anniversary. М.: MPEI, 2020. Pp. 1—5.
20. Gavryushin N., Dergachev P., Kurbatov P. Design of the Electrodynamic Seismic Sensor with Two Mechanic Oscillation Circuits // Proc. Intern. Youth Conf. Radio Electronics, Electrical and Power Eng. М.: MPEI, 2020. Pp. 1—5.
---
Для цитирования: Гаврюшин Н.Ю., Дергачев П.А., Курбатов П.А. Математическая модель электродинамического сейсмоприёмника // Вестник МЭИ. 2021. № 3. С. 33—40. DOI: 10.24160/1993-6982-2021-3-33-40.
#
1. Bashilov I.P. e. a. A New-generation Borehole Electrodynamic Seismometer for Seismological Research. J. Volcanology and Seismology. 2018;12:150—154.
2. Belyakov A. Instruments for Measuring Noise Inside the Earth. Intern. J. Geophysics and Geochemistry. 2017;4(6):97—102.
3. Chistova G.K. Modeli i Metody Obrabotki Seysmicheskikh Signalov v Sistemakh Raspoznavaniya. Penza: Izd-vo PGU, 2003. (in Russian).
4. Vinogradov A.E., Kukhal'skiy N.G. Raschet EDS na Vykhode Induktsionnogo Seysmopriemnika pri Vozdeystvii Seysmicheskoy Volny Releya. Vestnik BNTU. 2008;4:56—59. (in Russian).
5. Pakhomov A., Sicignano A., Sandy M., Goldburt T. Single and Three Axis Geophone: Footstep Detection with Bearing Estimation, Localization and Tracking. Unattended Ground Sensor Technol. and Appl. 2003;5090:155—161.
6. Aver'yanov A.V., Glebova G.M. Opredelenie Koordinat Dvizhushchegosya Ob′ekta Sosredotochennoy Seysmicheskoy Sistemoy Nablyudeniya. Avtometriya. 2014;4;67—73. (in Russian).
7. Dal Bo L., Gardonio P. Energy Harvesting with Electromagnetic and Piezoelectric Seismic Transducers: Unified Theory and Experimental Validation. J. Sound and Vibration. 2018;433:385—424.
8. Glynne-Jones P., Tudor M.J., Beeby S.P., White N.M. An Electromagnetic, Vibration-powered Generator for Intelligent Sensor Systems. Sensors and Actuators. 2004;110:344—349.
9. Elliott S.J., Zilletti M. Scaling of Electromagnetic Transducers for Shunt Damping and Energy Harvesting. J. Sound and Vibration. 2014;333:2185—2195.
10. Loussert G. Magnetic Actuators for Active Powertrain Vibration Control. SAE Techn. Paper. Warrendale: SAE, 2017.
11. Muggleton J.M., Brennan M.J., Rogers C.D.F. Point Vibration Measurements for the Detection of Shallow-buried Objects. Tunnelling and Underground Space Technol. 2014;39:27—33.
12. Korman M.S., Duong D. V., Kalsbeck A.E. Electrodynamic Soil Plate Oscillator: Modeling Nonlinear Mesoscopic Elastic Behavior and Hysteresis in Nonlinear Acoustic Landmine Detection. AIP Conference Proc. 2015:1—8.
13. Ryzhov A.B. Elektrodinamicheskie Seysmopriemniki. Tver': Izd-vo GERS, 2009. (in Russian).
14. Pat. № 178065 RF. Elektrodinamicheskiy Seysmopriemnik s Povyshennoy Mekhanicheskoy Stoykost'yu. N.Yu. Gavryushin, I.A. Kandidatov, A.V. Popov. Byul. Izobret. 2018. № 9. (in Russian).
15. Osnovy Teorii Elektricheskikh Apparatov. SPb.: Lan', 2015. (in Russian).
16. COMSOL Multiphysics® [Ofits. Sayt] www.comsol.com (Data Obrashcheniya 19.08.2020).
17. AC/DC Module User's Guide. Stockholm: COMSOL Multiphysics®, 2017.
18. Irodov I.E. Derivativnoe Elektronnoe Izdanie na Osnove Pechatnogo Izdaniya: Elektromagnetizm. Osnovnye Zakony. M.: BINOM. Laboratoriya Znaniy, 2014. (in Russian).
19. Gavryushin N., Dergachev P., Kurbatov P. Mathematical Model of the Electrodynamic Seismic Sensor with Two Mechanic Oscillation Circuits. Proc. 27th Intern. Workshop Electric Drives: MPEI Department of Electric Drives 90th Anniversary. M.: MPEI, 2020:1—5.
20. Gavryushin N., Dergachev P., Kurbatov P. Design of the Electrodynamic Seismic Sensor with Two Mechanic Oscillation Circuits. Proc. Intern. Youth Conf. Radio Electronics, Electrical and Power Eng. M.: MPEI, 2020:1—5.
---
For citation: Gavryushin N.Yu., Dergachev P.A., Kurbatov P.A. The Mathematical Model of an Electrodynamic Geophone. Bulletin of MPEI. 2021;3:33—40. (in Russian). DOI: 10.24160/1993-6982-2021-3-33-40

