Five-Phase Converter Control Algorithms for Implementing Space-Vector Modulation

Authors

  • Владимир [Vladimir] Михайлович [M.] Терешкин [Tereshkin]
  • Дмитрий [Dmitriy] Анатольевич [A.] Гришин [Grishin]
  • Вячеслав [Vyacheslav] Владимирович [V.] Терешкин [Tereshkin]
  • Искандер [Iskander] Ильсурович [I.] Балгазин [Balgazin]

DOI:

https://doi.org/10.24160/1993-6982-2021-4-86-94

Keywords:

five-phase winding, phase time sequence, five-phase winding vector space

Abstract

Multiphase (five-phase) motors can be considered as an alternative to three-phase motors in implementing electric traction with vector control.

The subject of the study is the five-phase winding voltage vector space formed by various control algorithms of a five-phase converter.

Thirty logical states of the converter form three types of the vector voltage space of a symmetrical five-phase winding. Each of the vector space types forms the resulting vector of a certain value. The resulting (generalized) voltage vector can take three different values.

With the phase time sequence ABCDE of a symmetrical five-phase winding ABCDE with the spatial phase shift equal to 72 electrical degrees, the fundamental harmonic vector is the resulting working voltage vector.

With the phase time sequence ACEBD of a symmetrical five-phase winding ABCDE with the spatial phase shift equal to 72 electrical degrees, the resulting voltage vector of the third harmonic is the resulting working vector.

The rotation frequency of the resulting third harmonic vector is three times the rotation frequency of the fundamental harmonic vector, and the rotation direction is opposite to the rotation direction of the fundamental harmonic vector. With one of the phase voltage forms and the phase time sequence ACEBD, the modulus of the resulting voltage vector of the third harmonic component is equal to the modulus of the resulting vector of the fundamental harmonic component. There are two converter control algorithms that form the resulting voltage vectors that are equal in modulus, but with different rotation speeds multiple of three.

An approach to studying the multiphase phase winding voltage vector space has been elaborated, which can be applied in implementing vector control.

Author Biographies

Владимир [Vladimir] Михайлович [M.] Терешкин [Tereshkin]

Ph.D. (Techn.), Assistant Professor of Electromechanics Dept., Ufa State Aviation Technical University, e-mail: tvm53@mail.ru

Дмитрий [Dmitriy] Анатольевич [A.] Гришин [Grishin]

Leading Engineer of LLC «Gaz-Project-Engineering», e-mail: lowrat@mail.ru

Вячеслав [Vyacheslav] Владимирович [V.] Терешкин [Tereshkin]

Student of Electromechanics Dept., Ufa State Aviation Technical University, e-mail: stierishkin@mail.ru

Искандер [Iskander] Ильсурович [I.] Балгазин [Balgazin]

— Student of Electromechanics Dept., Ufa State Aviation Technical University, e-mail: ibalgazin@yandex.ru

References

1. Козярук А.Е Современные эффективные электроприводы производственных и транспортных механизмов // Электротехника. 2019. № 3. С.33—37.
2. Козярук А.Е., Рудаков В.В. Системы управления электроприводов. Прямое управление моментом в электроприводе переменного тока. СПб.: Изд-во СПГГИ, 2008.
3. Козярук А.Е., Рудаков В.В. Прямое управление моментом в электроприводе переменного тока машин и механизмов горного производства. СПб.: СПГГИ, 2008.
4. Усольцев A.A. Современный асинхронный электропривод оптико-механических комплексов. СПб.: Изд-во ИТМО, 2011.
5. Терешкин В.М., Аитов И.Л., Сергеев Н.А. Исследование алгоритмов управления многофазных мостовых преобразователей // Электротехника. 2020. № 6. С. 17—23.
6. Терешкин В.М., Гришин Д.А., Макулов И.А. Элементы теории многофазных вентильных электромеханических систем // Электротехника. 2019. № 10. С. 56—61.
7. Терешкин В.М., Гришин Д.А., Макулов И.А. Установка для экспериментальных исследований электромеханических систем // Записки горного института. 2019. Т. 240. С. 678—685.
8. Терешкин В.М., Гришин Д.А. Исследование алгоритмов работы пятифазного преобразователя в режиме векторной широтно-импульсной модуляции // Электротехника. 2017. № 2. С. 46—51.
9. Chan C.C., Bouscayrol A., Chen K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling // IEEE Trans. Vehicular Technol. 2010. V. 59. No. 2. Pp. 589—598.
10. Levi E. e. a. Multiphase Induction Motor Drives — а Technology Status Review // IET Electric Power Appl. 2007. V. 1. No. 4. Pp. 489—516.
11. Dwari S., Parsa L. Fault-tolerant Control of Five-phase Permanent-magnet Motors with Trapezoidal Back EMF // IEEE Trans. Indust. Electron. 2011. V. 58. No. 2. Pp. 476—485.
12. Williamson S., Smith S. Pulsating Torque and Losses in Multiphase Induction Machines // IEEE Trans. Indust. Appl. 2003. V. 39. No. 4. Pp. 986—993.
13. Guzman H. e. a. Application of DSP in Power Conversion Systems — a Practical Approach for Multiphase Drives [Электрон. ресурс] www.cdn.intechopen.com/pdfs-wm/48835.pdf (дата обращения 09.09.2019).
14. Barrero F., Duran M.J. Recent Advances in the Design, Modeling, and Control of Multiphase Machines. Pt. I // IEEE Trans. Indust. Electronics. 2016. V. 63. No. 1. Pp. 449—455.
---
Для цитирования: Терешкин В.М., Гришин Д.А., Терешкин В.В., Балгазин И.И. Алгоритмы управления пятифазного преобразователя, реализующие пространственно-векторную модуляцию // Вестник МЭИ. 2021. № 4. С. 86—94. DOI: 10.24160/1993-6982-2021-4-86-94.
#
1. Kozyaruk A.E Sovremennye Effektivnye Elektroprivody Proizvodstvennykh i Transportnykh Mekhanizmov. Elektrotekhnika. 2019;3:33—37. (in Russian).
2. Kozyaruk A.E., Rudakov V.V. Sistemy Upravleniya Elektroprivodov. Pryamoe Upravlenie Momentom v Elektroprivode Peremennogo Toka. SPb.: Izd-vo SPGGI, 2008. (in Russian).
3. Kozyaruk A.E., Rudakov V.V. Pryamoe Upravlenie Momentom v Elektroprivode Peremennogo Toka Mashin i Mekhanizmov Gornogo Proizvodstva. SPb.: SPGGI, 2008. (in Russian).
4. Usol'tsev A.A. Sovremennyy Asinkhronnyy Elektroprivod Optiko-mekhanicheskikh Kompleksov. SPb.: Izd-vo ITMO, 2011. (in Russian).
5. Tereshkin V.M., Aitov I.L., Sergeev N.A. Issledovanie Algoritmov Upravleniya Mnogofaznykh Mostovykh Preobrazovateley. Elektrotekhnika. 2020;6:17—23. (in Russian).
6. Tereshkin V.M., Grishin D.A., Makulov I.A. Elementy Teorii Mnogofaznykh Ventil'nykh Elektromekhanicheskikh Sistem. Elektrotekhnika. 2019;10:56—61. (in Russian).
7. Tereshkin V.M., Grishin D.A., Makulov I.A. Ustanovka dlya Eksperimental'nykh Issledovaniy Elektromekhanicheskikh Sistem. Zapiski Gornogo Instituta. 2019;240:678—685. (in Russian).
8. Tereshkin V.M., Grishin D.A. Issledovanie Algoritmov Raboty Pyatifaznogo Preobrazovatelya v Rezhime Vektornoy Shirotno-impul'snoy Modulyatsii. Elektrotekhnika. 2017;2:46—51. (in Russian).
9. Chan C.C., Bouscayrol A., Chen K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling. IEEE Trans. Vehicular Technol. 2010;59;2:589—598.
10. Levi E. e. a. Multiphase Induction Motor Drives — a Technology Status Review. IET Electric Power Appl. 2007;1;4:489—516.
11. Dwari S., Parsa L. Fault-tolerant Control of Five-phase Permanent-magnet Motors with Trapezoidal Back EMF. IEEE Trans. Indust. Electron. 2011;58;2:476—485.
12. Williamson S., Smith S. Pulsating Torque and Losses in Multiphase Induction Machines. IEEE Trans. Indust. Appl. 2003;39;4:986—993.
13. Guzman H. e. a. Application of DSP in Power Conversion Systems — a Practical Approach for Multiphase Drives [Elektron. Resurs] www.cdn.intechopen.com/pdfs-wm/48835.pdf (Data Obrashcheniya 09.09.2019).
14. Barrero F., Duran M.J. Recent Advances in the Design, Modeling, and Control of Multiphase Machines. Pt. I. IEEE Trans. Indust. Electronics. 2016;63;1:449—455.
---
For citation: Tereshkin V.M., Grishin D.A., Tereshkin V.V., Balgazin I.I. Five-Phase Converter Control Algorithms for Implementing Space-Vector Modulation. Bulletin of MPEI. 2021;4:86—94. (in Russian). DOI: 10.24160/1993-6982-2021-4-86-94.

Published

2020-10-06

Issue

Section

Electrical Complex and Systems (05.09.03)