Heat Recovery Using Organic Rankine Cycle
DOI:
https://doi.org/10.24160/1993-6982-2021-5-51-57Keywords:
organic Rankine cycle (ORC), isentropic working fluids, low-temperature heat sourcesAbstract
Heat losses in industrial processes can be divided into three sections (high-, medium-, and low-temperature heat), depending on the temperature of the exhaust gases. This heat is usually recovered either by heat exchangers or by a closed Rankine cycle. However, about 60% of low-temperature heat losses remain irreplaceable. Currently, the organic Rankine cycle has become a promising method of low-temperature energy recovery, and several theoretical studies on this topic have appeared, but a small number of experimental studies have been performed.
In our work, we have built a 2 kW heat recovery laboratory test bench using tube-type heat exchangers, a gear pump and a turbo expander on the working fluid R141b. As a result, we found that the efficiency of the cycle increases as the boiling point and pressure increase, but an increase in overheating at the inlet of the expander leads to a decrease in efficiency due to the use of the working fluid R141b. At the inlet of the evaporator and the outlet of the condenser, respectively, overheating and supercooling of the working fluid occurs, which negatively affects the efficiency of the cycle. The amount of useful heat obtained was 45.4 W with an efficiency of 2.24%. as a result of low efficiency of the expander and pump, as well as leaks during the test.
The development of an experimental test bench with working on organic Rankin cycle requires long-term research work and great scientific potential. In the future, it will be necessary to create a new test bench based on a deeper study, so that we can get a higher efficiency of the expander and pump, which would affect the efficiency of this cycle. Also, we need to replace the working fluid in the cycle with a more efficient one.
References
2. Madhawa Hettiarachchi H.D., Golubovic M., Worek W.M., Ikegami Y. Optimum Design Criteria for an Organic Rankine Cycle Using Low-temperature Geothermal Heat Sources // Energy. 2007. V. 32. Pp. 1698—1706.
3. Casci C. e. a. Heat Recovery in a Ceramic Kiln with an Organic Rankine Cycle Engine // J. Heat Recovery Syst. 1981. V. 1. Pp. 125—131.
4. Guo C., Du X., Yang L., Yang Y. Organic Rankine Cycle for Power Recovery of Exhaust Flue Gas. Appl. Thermal Eng. 2015. V. 75. Pp. 135—144.
5. Xi X., Zhou Y., Guo C., Yang L., Du X. Characteristics of Organic Rankine Cycles with Zeotropic Mixture for Heat Recovery of Exhaust Gas of Boiler // Energy Proc. 2015. V. 75. Pp. 1093—1101.
6. Mazzi N., Rech S., Lazzaretto A. Off-design Dynamic Model of a Real Organic Rankine Cycle System Fuelled by Exhaust Gases from Industrial Processes // Energy. 2015. V. 90. Pp. 537—551.
7. Zhou N., Wang X., Chen Z., Wang Z. Experimental Study on Organic Rankine Cycle for Waste Heat Recovery from Low-temperature Flue Gas // Energy. 2013. V. 55. Pp. 216—225.
8. Peris B., Navarro-Esbrí J., Molés F., Collado R., Mota-Babiloni A. Performance Evaluation of an Organic Rankine Cycle (ORC) for Power Applications from Low Grade Heat Sources // Appl. Thermal Eng. 2015. V. 75. Pp. 763—769.
9. Peris B., Navarro-Esbrí J., Molés F., Collado R., Mota-Babiloni A. Experimental Study of an ORC (Organic Rankine Cycle) for Low Grade Waste Heat Recovery in a Ceramic Industry // Energy. 2015. V. 85. Pp. 534—542.
10. Goswami D.Y. Solar Thermal Power Technology: Present Status and Ideas for the Future // Energy Sources. 2007. V. 20. Pp. 137—145.
11. Li D., Zhang S., Wang G. Selection of Organic Rankine Cycle Working Fluids in the Low-Temperature Waste Heat Utilization // J. Hydrodynamics. 2015. V. 27. Pp. 458—464.
12. Manolakos D., Papadakis G., Kyritsis S., Bouzianas K. Experimental Evaluation of an Autonomous Low-temperature Solar Rankine Cycle System for Reverse Osmosis Desalination. Desalination. 2007. V. 203. Pp. 366—374.
13. Wang X.D., Zhao L., Wang J.L. Experimental Investigation on the Lоw-temperature Solar Rankine Cycle System Using R245fa // Energy Conversion and Management. 2011. V. 52. Pp. 946—952.
14. Uusitalo A., Honkatukia J., Backman J., Nyyssönenb S. Experimental Study on Charge Air Heat Utilization of Large-scale Reciprocating Engines by Means of Organic Rankine Cycle // Appl. Thermal Eng. 2015. V. 89. Pp. 209—219.
15. Chen Y., Lundqvist P., Johansson A., Platell P. A Comparative Study of the Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Workingfluid in Waste Heat Recovery // Appl. Thermal Eng. 2006. V. 26. Pp. 2142—2147.
16. Kane M., Larrain D., Favrat D., Allani Y. Small Hybrid Solar Power System // Energy. 2003. V. 28. Pp. 1427—1443.
17. Muhammad U., Imrana M., Lee D.H., Park B.S. Design and Experimental Investigation of a 1 kW Organic Rankine Cycle System Using R245fa as Working Fluid for Low-grade Waste Heat Recovery from Steam // Energy Conversion and Management. 2015. V. 103. Pp. 1089—1100.
18. Jung H.C., Taylor L., Krumdieck S. An Experimental and Modelling Study of a 1 kW Organic Rankine Cycle Unit with Mixture Working Fluid // Energy. 2015. V. 81. Pp. 601—614.
19. Chang J.C., Hung T.C., He Y.L., Zhang W. A Experimental Study on Low-temperature Organic Rankine Cycle Utilizing Scroll Type Expander // Appl. Energy. 2015. V. 155. Pp. 150—159.
20. Kosmadakis G. e. a. Experimental Testing of a Low-temperature Organic Rankine Cycle (ORC) Engine Coupled with Concentrating PV/Thermal Collectors: Laboratory Andfield Tests // Energy. 2016. V. 117. Pp. 222—236.
21. Wong C.S., Meyer D., Krumdieck S. Selection and Conversion of Turbocharger as Turbo-Expander for Organic Rankine Cycle (ORC) // Proc. 35th New Zealand Geothermal Workshop. Nov Rotorua, 2013. Pp. 1—8.
22. Meyer D., Wong C.S., Engle F., Krumdieck S. Design and Build of a 1 Kilowatt Organic Rankine Cycle Power Generator // Ibid. Pp. 1—7.
23. Султангузин И.А. Экологическая безопасность и энергетическая эффективность промышленных теплоэнергетических систем. М.: Изд-во МЭИ, 2013
---
Для цитирования: Бу Дакка Баидаа, Султангузин И.А., Яворовский Ю.В. Рекуперация тепла с использованием органического цикла Ренкина // Вестник МЭИ. 2021. № 5. С. 51—57. DOI: 10.24160/1993-6982-2021-5-51-57.
#
1. Quoilin S. e. a. Techno-economic Survey of Organic Rankine Cycle (ORC) Systems. Renewable and Sustainable Energy Rev. 2013;22:168—186.
2. Madhawa Hettiarachchi H.D., Golubovic M., Worek W.M., Ikegami Y. Optimum Design Criteria for an Organic Rankine Cycle Using Low-temperature Geothermal Heat Sources. Energy. 2007; 32:1698—1706.
3. Casci C. e. a. Heat Recovery in a Ceramic Kiln with an Organic Rankine Cycle Engine. J. Heat Recovery Syst. 1981;1:125—131.
4. Guo C., Du X., Yang L., Yang Y. Organic Rankine Cycle for Power Recovery of Exhaust Flue Gas. Appl. Thermal Eng. 2015;75:135—144.
5. Xi X., Zhou Y., Guo C., Yang L., Du X. Characteristics of Organic Rankine Cycles with Zeotropic Mixture for Heat Recovery of Exhaust Gas of Boiler. Energy Proc. 2015;75:1093—1101.
6. Mazzi N., Rech S., Lazzaretto A. Off-design Dynamic Model of a Real Organic Rankine Cycle System Fuelled by Exhaust Gases from Industrial Processes. Energy. 2015;90:537—551.
7. Zhou N., Wang X., Chen Z., Wang Z. Experimental Study on Organic Rankine Cycle for Waste Heat Recovery from Low-temperature Flue Gas. Energy. 2013;55:216—225.
8. Peris B., Navarro-Esbrí J., Molés F., Collado R., Mota-Babiloni A. Performance Evaluation of an Organic Rankine Cycle (ORC) for Power Applications from Low Grade Heat Sources. Appl. Thermal Eng. 2015;75:763—769.
9. Peris B., Navarro-Esbrí J., Molés F., Collado R., Mota-Babiloni A. Experimental Study of an ORC (Organic Rankine Cycle) for Low Grade Waste Heat Recovery in a Ceramic Industry. Energy. 2015;85:534—542.
10. Goswami D.Y. Solar Thermal Power Technology: Present Status and Ideas for the Future. Energy Sources. 2007;20:137—145.
11. Li D., Zhang S., Wang G. Selection of Organic Rankine Cycle Working Fluids in the Low-Temperature Waste Heat Utilization. J. Hydrodynamics. 2015;27:458—464.
12. Manolakos D., Papadakis G., Kyritsis S., Bouzianas K. Experimental Evaluation of an Autonomous Low-temperature Solar Rankine Cycle System for Reverse Osmosis Desalination. Desalination. 2007;203:366—374.
13. Wang X.D., Zhao L., Wang J.L. Experimental Investigation on the Lоw-temperature Solar Rankine Cycle System Using R245fa. Energy Conversion and Management. 2011;52:946—952.
14. Uusitalo A., Honkatukia J., Backman J., Nyyssönenb S. Experimental Study on Charge Air Heat Utilization of Large-scale Reciprocating Engines by Means of Organic Rankine Cycle. Appl. Thermal Eng. 2015;89:209—219.
15. Chen Y., Lundqvist P., Johansson A., Platell P. A Comparative Study of the Carbon Dioxide Transcritical Power Cycle Compared with an Organic Rankine Cycle with R123 as Workingfluid in Waste Heat Recovery. Appl. Thermal Eng. 2006;26:2142—2147.
16. Kane M., Larrain D., Favrat D., Allani Y. Small Hybrid Solar Power System. Energy. 2003;28:1427—1443.
17. Muhammad U., Imrana M., Lee D.H., Park B.S. Design and Experimental Investigation of a 1 kW Organic Rankine Cycle System Using R245fa as Working Fluid for Low-grade Waste Heat Recovery from Steam. Energy Conversion and Management. 2015;103:1089—1100.
18. Jung H.C., Taylor L., Krumdieck S. An Experimental and Modelling Study of a 1 kW Organic Rankine Cycle Unit with Mixture Working Fluid. Energy. 2015;81:601—614.
19. Chang J.C., Hung T.C., He Y.L., Zhang W. A Experimental Study on Low-temperature Organic Rankine Cycle Utilizing Scroll Type Expander. Appl. Energy. 2015;155:150—159.
20. Kosmadakis G. e. a. Experimental Testing of a Low-temperature Organic Rankine Cycle (ORC) Engine Coupled with Concentrating PV/Thermal Collectors: Laboratory Andfield Tests. Energy. 2016;117:222—236.
21. Wong C.S., Meyer D., Krumdieck S. Selection and Conversion of Turbocharger as Turbo-Expander for Organic Rankine Cycle (ORC). Proc. 35th New Zealand Geothermal Workshop. Nov Rotorua, 2013:1—8.
22. Meyer D., Wong C.S., Engle F., Krumdieck S. Design and Build of a 1 Kilowatt Organic Rankine Cycle Power Generator. Ibid:1—7.
23. Sultanguzin I.A. Ekologicheskaya Bezopasnost' i Energeticheskaya Effektivnost' Promyshlennykh Teploenergeticheskikh Sistem. M.: Izd-vo MEI, 2013. (in Russian).
---
For citation: Baydaa Bo Dakkah, Sultanguzin I.A., Yavorovsky Yu.V. An Experimental Study of Heat Recovery Based on the Organic Rankine Cycle. Bulletin of MPEI. 2021;5:51—57. (in Russian). DOI: 10.24160/1993-6982-2021-5-51-57.

