Development of a Turbine Generator Stator 3D Thermal Model Taking into Account Gas Dynamics

Authors

  • Виталий [Vitaliy] Владимирович [V.] Рыжов [Ryzhov]
  • Павел [Pavel] Андреевич [A.] Дергачев [Dergachev]
  • Екатерина [Ekaterina] Павловна [P.] Курбатова [Kurbatova]
  • Олег [Oleg] Николаевич [N.] Молоканов [Molokanov]
  • Павел [Pavel] Александрович [A.] Курбатов [Kurbatov]

DOI:

https://doi.org/10.24160/1993-6982-2021-5-75-82

Keywords:

mathematical model, thermal model, fluid dynamics, simulation, turbine generator, residual service life

Abstract

The construction of a thermal model of a fully air cooled turbine generator stator with taking into account gas dynamics is considered. The complete mathematical model includes various physical subsystems with multiphysical relationships. The study is based on accurate 3D models with the use of the modern and proven COMSOL Multiphysics software, in which the finite element method is used for calculation.

The equivalent thermal conductivity of the gap between the winding bar copper conductors and stator iron is studied. The gap in question consists of the winding bar main insulation and a gap filled with additional semiconducting gaskets or similar materials. The above-mentioned physical parameter has a strong influence on the temperature distribution, because the main part of the heat releasing in the bar is transferred to the stator core through these elements. The optimal minimum equivalent thermal conductivity coefficient is analyzed and selected. A model of a turbine generator stator symmetric element together with a turbulent cooling air flow is developed and analyzed. The development of such integrated models will make it possible not only to simplify the design process, but also to analyze various insulation systems. For example, air-cooled turbine generators initially use the Global VPI insulation system; however, after replacing---for economic reasons---the stator winding, another insulation system is used, namely, the Resin Rich system. For correctly making a transition to another insulation system, integrated calculations, including thermal ones, should be carried out. In practice, after changing the insulation system, which may entail certain thermal limitations, it may be necessary to decrease the turbine generator rated power output for its further operation without overheating the stator winding, which can be obtained on the basis of simulation. In this regard, the equivalent thermal conductivity coefficient also plays an important role; its value can be preliminarily analyzed to select the necessary materials in terms of their thermal properties, and their filling factor to retain the turbine generator nominal parameters after its rewinding.

Author Biographies

Виталий [Vitaliy] Владимирович [V.] Рыжов [Ryzhov]

Ph.D.-student of Electromechanics, Electrical and Electronic Apparatus Dept., Assistant of Theoretical Fundamentals of Electrical Engineering Dept., NRU MPEI, e-mail: vitalijrv@gmail.com

Павел [Pavel] Андреевич [A.] Дергачев [Dergachev]

Ph.D. (Techn.), Assistant Professor of Electromechanics, Electrical and Electronic Apparatus Dept., NRU MPEI, e-mail: Pavel.Dergachev@gmail.com

Екатерина [Ekaterina] Павловна [P.] Курбатова [Kurbatova]

Assistant Professor of Electromechanics, Electrical and Electronic Apparatus Dept., NRU MPEI, e-mail: kurbatovaep@mail.ru

Олег [Oleg] Николаевич [N.] Молоканов [Molokanov]

Assistant Professor of Electromechanics, Electrical and Electronic Apparatus Dept., NRU MPEI, e-mail: molokanovon@gmail.com

Павел [Pavel] Александрович [A.] Курбатов [Kurbatov]

Dr.Sci. (Techn.), Professor of Electromechanics, Electrical and Electronic Apparatus Dept., NRU MPEI, e-mail: kurbatovpa@gmail.com

References

1. Klempner G., Kerszenbaum I. Handbook of Large Turbo-generator Operation and Maintenance. N.-Y.: Wiley-IEEE Press, 2018.
2. Klempner G., Kerszenbaum I. Large Turbo-generators Malfunctions and Symptoms. Boca Raton: CRC Press, 2016.
3. Stone G., Culbert I., Boulter Ed., Dhirani H. Electrical Insulation for Rotating Machines. N.-Y.: Wiley-IEEE Press, 2014.
4. Антонюк О.В. Разработка и обоснование новых конструкций мощных турбогенераторов с газовым охлаждением: автореф. дис. … канд. техн. наук. СПб.: Изд-во Санкт-Петербургского политехн. ун-та им. Петра Великого, 2016.
5. Antonyuk O., Gurevich Z., Pafomov Yu. An Experimental Determination of the Heat-transfer Coefficients in the Channels of a Turbogenerator Stator with Air and Hydrogen Cooling // Power Technol. and Eng. 2014. V. 48. No. 3. Pp. 236—249.
6. Antonyuk O., Gurevich Z., Kartashova T. Current Problems and Trends in Gas Cooling of Turbogenerators // Power Technol. and Eng. 2014. V. 48. No. 4. Pp. 316—321.
7. Jiří F., Pechanek R. Analysis of Rotor Ventilation System of Air Cooled Synchronous Machine Through Computational Fluid Dynamics // Proc. Intern. Conf. Mechatronic. 2018. Pp. 1—8.
8. Frost N., Penrose H. Practical Dissection Methods for Rotating Equipment Insulation Assessment // Proc. Electrical Insulation Conf. 2017. Pp. 1—4.
9. Azizov A., Andreev A., Kostelov A., Polikarpov Yu. Thermal Conductivity of the Insulation System of the Stator Winding of a High-power Turbogenerator with Air Cooling // Russian Electrical Eng. 2009. V. 80. No. 3. Pp. 128—131.
10. Meleshenko V. e. a. The Thermal Conductivity of Electrical-Insulating Materials and Insulation Systems // Russian Electrical Eng. 2017. V. 88. No. 9. Pp. 609—614.
11. Samek J., Ondrusek C., Kurfurst J. A Review of Thermal Conductivity of Epoxy Composites Filled with Al2O3 or SiO2 // Proc. 19th European Conf. Power Electronics and Appl. 2017. Pp. 1—6.
12. Meng Xiao, Bo Xue Du. Review of High Thermal Conductivity Polymer Dielectrics for Electrical Insulation // High Volt. 2016. V. 1. Iss. 1. Pp. 34—42.
13. Kitajima T., Ito H., Nagano S., Kazao Y. The World’s Largest Capacity Turbine Generators with Indirect Hydrogen-Cooling // Paris Session 2014 CIGRE A1-106. Pp. 1—8.
14. Heat Transfer in Solids Module User's Guide. Stockholm: COMSOL AB, 2019. Pp. 100—299.
15. CFD Module User's Guide. Stockholm: COMSOL AB, 2019. Pp. 148—200.
16. Ryzhov V., Dergachev P., Kurbatov P. Three-dimensional Thermal Stator Model of a Fully Air-cooled Turbogenerator // Proc. 27th Intern. Workshop Electric Drives. Moscow: NRU MPEI, 2020. Pp. 1—4.
17. Frost N.E., Williamson M., Miller G H. Experiences with Resin Rich Mica Taping Materials // Proc. Electrical Insulation Conf. 2016. Pp. 1—4.
18. Marek P., Senn F., Grubelnik W., Ladstätter W. Impact of New Motor and Generator Insulation Systems // Energize J. 2007. V. 11. Pp. 51—55.
19. Haibing Zhang, Cloud A. Silicone Based Electrical Insulation Material for High Speed/Voltage Rotating Machines // Coil Winding. Insulation&Electrical Manufacturing Exhibition, 2011. Pp. 1—8.
---
Для цитирования: Рыжов В.В., Дергачев П.А., Курбатова Е.П., Молоканов О.Н., Курбатов П.А. Построение трёхмерной тепловой модели статора турбогенератора с учётом газодинамики // Вестник МЭИ. 2021. № 5. С. 75—82. DOI: 10.24160/1993-6982-2021-5-75-82.
#
1. Klempner G., Kerszenbaum I. Handbook of Large Turbo-generator Operation and Maintenance. N.-Y.: Wiley-IEEE Press, 2018.
2. Klempner G., Kerszenbaum I. Large Turbo-generators Malfunctions and Symptoms. Boca Raton: CRC Press, 2016.
3. Stone G., Culbert I., Boulter Ed., Dhirani H. Electrical Insulation for Rotating Machines. N.-Y.: Wiley-IEEE Press, 2014.
4. Antonyuk O.V. Razrabotka i Obosnovanie Novykh Konstruktsiĭ Moshchnykh Turbogeneratorov s Gazovym Okhlazhdeniem: Avtoref. Dis. … Kand. Tekhn. Nauk. SPb.: Izd-vo Sankt-Peterburgskogo Politekhn. Un-ta im. Petra Velikogo, 2016. (in Russian).
5. Antonyuk O., Gurevich Z., Pafomov Yu. An Experimental Determination of the Heat-transfer Coefficients in the Channels of a Turbogenerator Stator with Air and Hydrogen Cooling. Power Technol. and Eng. 2014;48;3:236—249.
6. Antonyuk O., Gurevich Z., Kartashova T. Current Problems and Trends in Gas Cooling of Turbogenerators. Power Technol. and Eng. 2014;48;4:316—321.
7. Jiří F., Pechanek R. Analysis of Rotor Ventilation System of Air Cooled Synchronous Machine Through Computational Fluid Dynamics. Proc. Intern. Conf. Mechatronic. 2018:1—8.
8. Frost N., Penrose H. Practical Dissection Methods for Rotating Equipment Insulation Assessment. Proc. Electrical Insulation Conf. 2017:1—4.
9. Azizov A., Andreev A., Kostelov A., Polikarpov Yu. Thermal Conductivity of the Insulation System of the Stator Winding of a High-power Turbogenerator with Air Cooling. Russian Electrical Eng. 2009;80;3:128—131.
10. Meleshenko V. e. a. The Thermal Conductivity of Electrical-Insulating Materials and Insulation Systems. Russian Electrical Eng. 2017;88;9:609—614.
11. Samek J., Ondrusek C., Kurfurst J. A Review of Thermal Conductivity of Epoxy Composites Filled with Al2O3 or SiO2. Proc. 19th European Conf. Power Electronics and Appl. 2017:1—6.
12. Meng Xiao, Bo Xue Du. Review of High Thermal Conductivity Polymer Dielectrics for Electrical Insulation. High Volt. 2016;1;1:34—42.
13. Kitajima T., Ito H., Nagano S., Kazao Y. The World’s Largest Capacity Turbine Generators with Indirect Hydrogen-Cooling. Paris Session 2014 CIGRE A1-106:1—8.
14. Heat Transfer in Solids Module User's Guide. Stockholm: COMSOL AB, 2019:100—299.
15. CFD Module User's Guide. Stockholm: COMSOL AB, 2019:148—200.
16. Ryzhov V., Dergachev P., Kurbatov P. Three-dimensional Thermal Stator Model of a Fully Air-cooled Turbogenerator. Proc. 27th Intern. Workshop Electric Drives. Moscow: NRU MPEI, 2020:1—4.
17. Frost N.E., Williamson M., Miller G H. Experiences with Resin Rich Mica Taping Materials. Proc. Electrical Insulation Conf. 2016:1—4.
18. Marek P., Senn F., Grubelnik W., Ladstätter W. Impact of New Motor and Generator Insulation Systems. Energize J. 2007;11:51—55.
19. Haibing Zhang, Cloud A. Silicone Based Electrical Insulation Material for High Speed/Voltage Rotating Machines. Coil Winding. Insulation&Electrical Manufacturing Exhibition, 2011:1—8.
---
For citation: Ryzhov V.V., Dergachev P.A., Kurbatova E.P., Molokanov O.N., Kurbatov P.A. Development of a Turbine Generator Stator 3D Thermal Model Taking into Account Gas Dynamics. Bulletin of MPEI. 2021;5:75—82. (in Russian). DOI: 10.24160/1993-6982-2021-5-75-82.

Published

2021-04-08

Issue

Section

Electromechanics and Electrical Apparatus (05.09.01)