Improving the Reliability of Traction Induction Motors Used in the Electric Rolling Stock

Authors

  • Виктор [Viktor] Дмитриевич [D.] Тулупов [Tulupov]
  • Михаил [Mikhail] Александрович [A.] Слепцов [Sleptsov]
  • Александрс [Aleksandrs] Айнарович [A.] Бриедис [Briedis]

DOI:

https://doi.org/10.24160/1993-6982-2021-5-92-102

Keywords:

traction drive, frequency and voltage converters, bearing current

Abstract

The problem of failures of traction machines used in the electric rolling stock (ERS) is considered. In the course of ERS operation with microprocessor control and the use of electric drives with semiconductor converters and induction traction motors (ITMs), it is observed that the service life of bearings reduces from the 2 million km declared by the manufacturer, to 200-600 thousand km.

The study of bearings shows the following types of damage: dulling of rolling elements and tracks of the outer and inner rings, grooving, and lubricant degradation. An analysis that was carried out shows that in the majority of cases, the bearings fail as a consequence of a current flowing through them. The currents flowing through bearings are generated due to different mechanisms. A classification of bearing currents is proposed, and possible current flow loops are analyzed. Based on an analysis of literature sources, methods for reducing the bearing currents are given, and their effectiveness is evaluated.

To enhance the ITM reliability, several measures to prevent electric current from passing through the bearings have been developed, including the method of plasma deposition of aluminum oxide on the outer ring, which insulates the bearing outer ring from the motor body, and hybrid bearings with ceramic rolling bodies. To select the optimal solution and determine the difference between the outer ring insulation concept and the hybrid concept, operational tests were carried out. Conclusions have been drawn about the expediency of using hybrid bearings with rings made of bearing steel and rolling elements made of bearing silicon nitride (Si3N4).

Author Biographies

Виктор [Viktor] Дмитриевич [D.] Тулупов [Tulupov]

(22.02.1932 — 28.02.2021) — Dr.Sci. (Techn.), Professor of Electrical Engineering Complexes of Self-Contained Objects and Electrical Transport Dept., NRU MPEI

Михаил [Mikhail] Александрович [A.] Слепцов [Sleptsov]

Ph.D. (Techn.), Assistant Professor, Professor

Александрс [Aleksandrs] Айнарович [A.] Бриедис [Briedis]

Master of Engineering and Technology in «Electric Power Engineering and Electrical Engineering», Аpplicant, Senior Lecturer of Electrical Engineering Complexes of Self-Contained Objects and Electrical Transport Dept., NRU MPEI, Chief Specialist of the Technological Development Dept. of LLC «Trading House LocoTech», e-mail: aleksandrs_briedis@mail.ru

References

1. Busse D. e. a. Bearing Currents and Their Relationship to PWM Drives // IEEE Trans. Power Electronics. 1997. V. 12. Pp. 243—252.

2. Shaotang Chen, Lipo T.A., Fitzgerald D. Modeling of Motor Bearing Currents in PWM Inverter Drives // IEEE Trans. Industry Appl. 1996. V. 32. No. 6. Pp. 1365—1370.

3. Busse D., Erdman J.M., Kerkman R.J., Schlegel D.W., Skibinski G. The Effects of PWM Voltage Source Inverters on the Mechanical Perfomence of Rolling Bearings // IEEE Trans. Industry Appl. 1997. V. 33. No. 2. Pp. 567—576.

4. Mutze A. Bearing Currents in Inverter Fed AC-motors. Aachen: TU-Darmstadt, 2004.

5. Tischmacher H., Gattermann S. Bearing Currents in Converter Operation // Proc. XIX Intern. Conf. Electrical Machines. 2010. Pp. 1—8.

6. Tischmacher H., Gattermann S. Investigations on Bearing Currents in Converter-fed Electrical Motors // Proc. XX Intern. Conf. Electrical Machines. 2012. Pp. 1764—1770.

7. Тулупов В.Д., Слепцов М.А, Бриедис А.А. Методы повышения надёжности работы подшипниковых узлов в тяговых асинхронных машинах // Вестник МЭИ. 2021. № 2. С. 60—70.

8. ГОСТ IEC/TS 61800-8—2017. Электрические приводные системы с регулируемой скоростью. Ч. 8. Спецификация напряжения на силовом сопряжении

9. Kriese M., Wittek E., Gatterman S., Tischmacher H., Poll G. Prediction of Motor Bearing Currents for Converter Operation // Proc. XIX Intern. Conf. Electrical Machines. 2010. Pp. 1—6.

10. Mutze A., Oh H.W. Design Aspects of Conductive Microfiber Rings for Shaft-Grounding Purposes // IEEE Trans. Industry Appl. 2008. V. 44. No. 6. Pp. 1749—1757.

11. Kempski A., Smolenski R., Bojarski J. Statistical Model of Electrostatic Discharge Hazard in Bearing of Induction Motor Fed by Inverter // J. Electrostatics. 2005. V. 63. No. 6—10. Pp. 475—480.

12. Shaotang Chen, Lipo T. Circulating Type Motor Bearing Current in Inverter Drives // Industry Appl. Magazine. 1998. V. 4. Pp. 32—38.

13. Conraths H.J., Giessler F., Heining H.D. Shaft Voltage and Bearing Currents — New Phenomen in Inverter Drive Induction Machines // European Conf. Power Electronics and Appl. 1999.

14. Dahl D., Sosnowski D., Schlegel D., Kerkman R.J., Pennings M. Gear up Your Bearings // Industry Appl. Magazine. 2008. V. 14. Pp. 45—53.

---

Для цитирования: Тулупов В.Д., Слепцов М.А., Бриедис А.А. Повышение надёжности приводных асинхронных машин на электроподвижном составе. // Вестник МЭИ. 2021. № 5. С. 92—102. DOI: 10.24160/1993-6982-2021-5-92-102.

#

1. Busse D. e. a. Bearing Currents and Their Relationship to PWM Drives. IEEE Trans. Power Electronics. 1997;12:243—252.

2. Shaotang Chen, Lipo T.A., Fitzgerald D. Modeling of Motor Bearing Currents in PWM Inverter Drives. IEEE Trans. Industry Appl. 1996;32;6:1365—1370.

3. Busse D., Erdman J.M., Kerkman R.J., Schlegel D.W., Skibinski G. The Effects of PWM Voltage Source Inverters on the Mechanical Perfomence of Rolling Bearings. IEEE Trans. Industry Appl. 1997;33;2:567—576.

4. Mutze A. Bearing Currents in Inverter Fed AC-motors. Aachen: TU-Darmstadt, 2004.

5. Tischmacher H., Gattermann S. Bearing Currents in Converter Operation. Proc. XIX Intern. Conf. Electrical Machines. 2010:1—8.

6. Tischmacher H., Gattermann S. Investigations on Bearing Currents in Converter-fed Electrical Motors. Proc. XX Intern. Conf. Electrical Machines. 2012:1764—1770.

7. Tulupov V.D., Sleptsov M.A, Briedis A.A. Metody Povysheniya Nadezhnosti Raboty Podshipnikovykh Uzlov v Tyagovykh Asinkhronnykh Mashinakh. Vestnik MEI.2021;2:60—70. (in Russian).

8. GOST IEC/TS 61800-8—2017. Elektricheskie Privodnye Sistemy s Reguliruemoy Skorost'yu. Ch. 8. Spetsifikatsiya napryazheniya na Silovom Sopryazhenii. (in Russian).

9. Kriese M., Wittek E., Gatterman S., Tischmacher H., Poll G. Prediction of Motor Bearing Currents for Converter Operation. Proc. XIX Intern. Conf. Electrical Machines. 2010:1—6.

10. Mutze A., Oh H.W. Design Aspects of Conductive Microfiber Rings for Shaft-Grounding Purposes. IEEE Trans. Industry Appl. 2008;44;6:1749—1757.

11. Kempski A., Smolenski R., Bojarski J. Statistical Model of Electrostatic Discharge Hazard in Bearing of Induction Motor Fed by Inverter. J. Electrostatics. 2005;63;6—10:475—480.

12. Shaotang Chen, Lipo T. Circulating Type Motor Bearing Current in Inverter Drives. Industry Appl. Magazine. 1998;4:32—38.

13. Conraths H.J., Giessler F., Heining H.D. Shaft Voltage and Bearing Currents — New Phenomen in Inverter Drive Induction Machines. European Conf. Power Electronics and Appl. 1999.

14. Dahl D., Sosnowski D., Schlegel D., Kerkman R.J., Pennings M. Gear up Your Bearings. Industry Appl. Magazine. 2008;14:45—53

---

For citation: Tulupov V.D., Sleptsov M.A., Briedis A.A. Improving the Reliability of Traction Induction Motors Used in the Electric Rolling Stock. Bulletin of MPEI. 2021;5:92—102. (in Russian). DOI: 10.24160/1993-6982-2021-5-92-102.

Published

2021-02-02

Issue

Section

Electrical Complex and Systems (05.09.03)