Improving the Efficiency of Testing Aircraft Models for Flutter Using Measurement and Information Systems in a Subsonic Wind Tunnel

Authors

  • Борис [Boris] Алексеевич [A.] Логунов [Logunov]
  • Илья [Ilya] Андреевич [A.] Харин [Kharin]

DOI:

https://doi.org/10.24160/1993-6982-2021-5-103-107

Keywords:

flutter, information and measurement system, dynamically similar model, structurally similar model, wind tunnel, critical speed, decrement, spectral analysis, impulse force

Abstract

The technology of testing dynamically and structurally similar aircraft models for flutter in subsonic wind tunnels using information and measurement systems (IMS) is based on collection and processing of experimental data obtained in subcritical modes. The data received feature a significant scatter, in view of which the critical flutter speed is determined with acceptable accuracy only after its statistical post-processing. In view of the need to study a number of model versions during the flutter tests, the technology involved significant time spent for wind tunnel air flow startups and for processing of experimental data. To decrease the above-mentioned time expenditures, a more efficient technology was developed, using which it becomes possible, owing to a more sophisticated IMS structure, to quickly determine the critical flutter speed with acceptable accuracy directly in the course of tests. The essence of the new technology is that it eliminates interference that occurs in the existing system by introducing data transmission equipment into the IMS structure via a wireless Wi-Fi network. In view of this feature, it becomes possible to do the following in the course of testing the model for flutter in subcritical modes: to record the model time response to the impulse force, perform its spectral analysis, and plot the amplitude spectrum. The plotted amplitude spectrum is then used to measure the fundamental harmonic component, calculate and plot the functional dependence of the quantity inverse to the amplitude of the model oscillations fundamental tone on the flow velocity using approximation and extrapolation methods. The critical flutter speed is determined with acceptable accuracy when the functional dependence graph crosses zero. It is shown that the use of the proposed technology in flutter tests makes it possible to shorten the time taken to start the wind tunnel by a factor of 5 and the time taken to process the experimental data by a factor of 6, with the resulting error not exceeding 5%. It is recommended to use the technology in the Central Aerohydrodynamic Institute's subsonic wind tunnels in performing aircraft models flutter tests.

Author Biographies

Борис [Boris] Алексеевич [A.] Логунов [Logunov]

Ph.D. (Techn.), Head of the Department of Central Aerohydrodynamic Institute named after Professor N.E. Zhukovsky, e-mail: logunov39@mail.ru

Илья [Ilya] Андреевич [A.] Харин [Kharin]

Master's Student of Security and Information Technologies Dept., NRU MPEI, e-mail: xarin.ilya@bk.ru

References

1. Лампер Р.Е., Лыщинский В.В. Введение в теорию и моделирование флаттера. Новосибирск: Изд-во НГТУ, 1999. С. 3—8.
2. Азаров Ю.А., Зиченков М.Ч., Парышев С.Э., Стрелков К.С. Развитие технологии моделирования явлений динамической аэроупругости в аэродинамических трубах. М.: Изд-во МАИК «Наука/Интерпериодика», 2018. С. 12.
3. Аэроупругость/ под ред. П.Е. Карклэ. М.: Инновационное машиностроение, 2019.
4. Брянцев Б.Д., Карклэ П.Г. Некоторые результаты определения критической скорости флаттера экстраполяционными методами // Труды ЦАГИ. 1976. Вып. 1772. С. 16—23.
5. Брянцев Б.Д., Карклэ П.Г. Об экстраполяционных методах определения критической скорости флаттера // Труды конференции по аэроупругости. М.: ЦАГИ, 1977.
6. Карклэ П.Г. Определение частот и декрементов собственных колебаний конструкции по переходным процессам // Ученые записки ЦАГИ. 1988. Т. XIX. № 1. С. 118—123.
7. Брянцев Б.Д., Карклэ П.Г., Парышев С.Э. Измерение частотных характеристик динамически подобных моделей в аэродинамических трубах // Труды ЦАГИ. 1992. Вып. 2481.
8. NI [Офиц. сайт] www.ni.com (дата обращения 25.02.2021).
9. Акселерометры для модальных испытаний [Электрон. ресурс] www.all-pribors.ru (дата обращения 25.02.2021).
10. WinПОС. Пакет обработки сигналов [Электрон. ресурс] www.nppmera.ru (дата обращения 25.02.2021).
---
Для цитирования: Логунов Б.А., Харин И.А. Повышение эффективности испытаний моделей самолетов на флаттер с использованием измерительно-информационных систем в дозвуковой аэродинамической трубе // Вестник МЭИ. 2021. № 5. С. 103—107. DOI: 10.24160/1993-6982-2021-5-103-107.
#
1. Lamper R.E., Lyshchinskiy V.V. Vvedenie v Teoriyu i Modelirovanie Flattera. Novosibirsk: Izd-vo NGTU, 1999:3—8. (in Russian).
2. Azarov Yu.A., Zichenkov M.Ch., Paryshev S.E., Strelkov K.S. Razvitie Tekhnologii Modelirovaniya Yavleniy Dinamicheskoy Aerouprugosti v Aerodinamicheskikh Trubakh. M.: Izd-vo MAIK «Nauka/Interperiodika», 2018:12. (in Russian).
3. Aerouprugost'. Pod Red. P.E. Karkle. M.: Innovatsionnoe Mashinostroenie, 2019. (in Russian).
4. Bryantsev B.D., Karkle P.G. Nekotorye Rezul'taty Opredeleniya Kriticheskoy Skorosti Flattera Ekstrapolyatsionnymi Metodami. Trudy TSAGI. 1976;1772:16—23. (in Russian).
5. Bryantsev B.D., Karkle P.G. Ob Ekstrapolyatsionnykh Metodakh Opredeleniya Kriticheskoy Skorosti Flattera. Trudy Konferentsii po Aerouprugosti. M.: TSAGI, 1977. (in Russian).
6. Karkle P.G. Opredelenie Chastot i Dekrementov Sobstvennykh Kolebaniy Konstruktsii po Perekhodnym Protsessam. Uchenye Zapiski TSAGI. 1988;XIX;1:118—123. (in Russian).
7. Bryantsev B.D., Karkle P.G., Paryshev S.E. Izmerenie Chastotnykh Kharakteristik Dinamicheski Podobnykh Modeley v Aerodinamicheskikh Trubakh. Trudy TSAGI. 1992;2481. (in Russian).
8. NI [Ofits. Sayt] www.ni.com (Data Obrashcheniya 25.02.2021).
9. Akselerometry dlya Modal'nykh Ispytaniy [Elektron. Resurs] www.all-pribors.ru (Data Obrashcheniya 25.02.2021). (in Russian).
10. WinPOS. Paket Obrabotki Signalov [Elektron. Resurs] www.nppmera.ru (Data Obrashcheniya 25.02.2021). (in Russian).
---
For citation: Logunov B.A., Kharin I.A. Improving the Efficiency of Testing Aircraft Models for Flutter Using Measurement and Information Systems in a Subsonic Wind Tunnel. Bulletin of MPEI. 2021;5:103—107. (in Russian). DOI: 10.24160/1993-6982-2021-4-103-107.

Published

2021-02-07

Issue

Section

System Analysis, Management and Information Processing (05.13.01)