Methods for Calculating Thermodynamic Potentials in Estimating the Oxide Layer Composition on Metal Surfaces
DOI:
https://doi.org/10.24160/1993-6982-2021-6-77-81Keywords:
thermodynamic potentials, Gibbs energy variation, water chemistry, structural materials, fossil power plants, nuclear power plantsAbstract
To select proper water chemistry at fossil and nuclear power plants, data on the composition of oxide film formed on the metal surface contacting with aqueous coolant are necessary. By using these data, the processes occurring on the metal surface can be estimated. Calculation of Pourbaix diagrams is one of the methods using which the processes that take place on metal surface depending on the redox potential and pH can be established. To calculate these diagrams, it is necessary to have a certain set of thermodynamic data based on which it is possible to estimate the possibility of various chemical reactions to occur in the “aqueous coolant – metal” system. However, not all thermodynamic data are available from the literature, especially at high parameters. The article discusses two new methods for calculating the thermodynamic potentials of metal oxides and hydroxides. The first one, called the relative deviation method, is used for carrying out calculations in the coolant temperature range 25–327°C, and the second method, called the relative variation method, is used for carrying out calculations in the coolant temperature range 327–827°C and can also be used for more exactly determining the data obtained using the first method. Both methods can be used for estimating the most probable region for forming protective oxide films on structural material surfaces contacting with aqueous coolant.
References
2. Петрова Т.И. Основы методики построения диаграмм состояния железа и меди. М. Изд-во МЭИ, 1976.
3. Macdonald D.D., Shierman G., Butler P. The Thermodynamics of Metal-water Systems at Elevated Temperatures. Ontario: AECL, 1972.
4. Петрова Т.И., Рогалев А.Н., Селиванов Е.А. Выбор конструкционных материалов и водно-химического режима для тепловых электростанций ультрасверхкритических параметров // Новое в российской электроэнергетике. 2016. № 7. С. 22—31.
5. Тумановский А.Г. и др. Пылеугольные энергоблоки на супер- и ультрасверхкритические параметры пара // Теплоэнергетика. 2017. № 2. С. 3—19.
6. Petrova T.I., Selivanov E.A. Using of Pourbaix Diagram for Evaluation of Water Chemistry Recommended for Ultra-supercritical Parameter of Water Coolant // J. Physics: Conf. Series. 2017. V. 891(1). P. 012262.
7. Карапетьянц М.Х. Методы сравнительного расчета физико-химических свойств. М.: Наука, 1965.
8. Киреев В.А. Методы практических расчетов в термодинамике химических реакций, М.: Химия, 1975.
9. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости твердых сплавов железа, хрома и никеля. Челябинск: Изд-во Челябинского гос. ун-та, 2011.
10. Гамбург Ю.Д. Химическая термодинамика. М.: Лаборатория знаний, 2016.
11. Уикс К.Е., Блок Ф.Е. Термодинамические свойства 65 элементов, их окислов, галогенидов, карбидов и нитридов. М.: Металлургия, 1965.
12. Kelly K.K. High-temperature Heat-content, Heat-capacity, and Entropy Data for the Elements and Inorganic Compounds. Washington: U.S. Government Print. Office, 1960.
13. Гаррелс Р.М., Крайст Ч.Л. Растворы, минералы, равновесия. М.: Мир, 1968.
14. Могутнов Б.М., Томилин И.А., Шварцман Л.А. Термодинамика сплавов железа. М.: Металлургия, 1984.
15. Банных О.А. и др. Диаграммы состояния двойных и многокомпонентных систем на основе железа. М.: Металлургия, 1986.
16. Гаррелс Р.М. Минеральные равновесия. М.: Мир, 1962
---
Для цитирования: Селиванов Е.А., Петрова Т.И. Методы расчета термодинамических потенциалов при оценке состава оксидного слоя на поверхности металлов // Вестник МЭИ. 2021. № 6. С. 77—81. DOI: 10.24160/1993-6982-2021-6-77-81
---
Работа выполнена при поддержке: РФФИ (проект № 19-38-90213\19)
#
1. Lee J.B. Elevated Temperature Potential-pH Diagrams for the Cr–H2O, Ti–H2O, Mo–H2O and Pt–H2O Systems. Corrosion. 1981;37;8:467—481.
2. Petrova T.I. Osnovy Metodiki Postroeniya Diagramm Sostoyaniya Zheleza i Medi. M. Izd-vo MEI, 1976. (in Russian).
3. Macdonald D.D., Shierman G., Butler P. The Thermodynamics of Metal-water Systems at Elevated Temperatures. Ontario: AECL, 1972.
4. Petrova T.I., Rogalev A.N., Selivanov E.A. Vybor Konstruktsionnykh Materialov i Vodno-khimicheskogo Rezhima dlya Teplovykh Elektrostantsiy Ul'trasverkhkriticheskikh Parametrov. Novoe v Rossiyskoy Elektroenergetike. 2016;7:22—31. (in Russian).
5. Tumanovskiy A.G. i dr. Pyleugol'nye Energobloki na Super- i Ul'trasverkhkriticheskie Parametry Para. Teploenergetika. 2017;2:3—19. (in Russian).
6. Petrova T.I., Selivanov E.A. Using of Pourbaix Diagram for Evaluation of Water Chemistry Recommended for Ultra-supercritical Parameter of Water Coolant. J. Physics: Conf. Series. 2017;891(1):012262.
7. Karapet'yants M.Kh. Metody Sravnitel'nogo Rascheta Fiziko-khimicheskikh Svoystv. M.: Nauka, 1965. (in Russian).
8. Kireev V.A. Metody Prakticheskikh Raschetov v Termodinamike Khimicheskikh Reaktsiy, M.: Khimiya, 1975. (in Russian).
9. Tyurin A.G. Termodinamika Khimicheskoy i Elektrokhimicheskoy Ustoychivosti Tverdykh Splavov Zheleza, Khroma i Nikelya. Chelyabinsk: Izd-vo Chelyabinskogo Gos. Un-ta, 2011. (in Russian).
10. Gamburg Yu.D. Khimicheskaya Termodinamika. M.: Laboratoriya Znaniy, 2016. (in Russian).
11. Uiks K.E., Blok F.E. Termodinamicheskie Svoystva 65 Elementov, Ikh Okislov, Galogenidov, Karbidov i Nitridov. M.: Metallurgiya, 1965. (in Russian).
12. Kelly K.K. High-temperature Heat-content, Heat-capacity, and Entropy Data for the Elements and Inorganic Compounds. Washington: U.S. Government Print. Office, 1960.
13. Garrels R.M., Krayst Ch.L. Rastvory, Mineraly, Ravnovesiya. M.: Mir, 1968. (in Russian).
14. Mogutnov B.M., Tomilin I.A., Shvartsman L.A. Termodinamika Splavov Zheleza. M.: Metallurgiya, 1984. (in Russian).
15. Bannykh O.A. i dr. Diagrammy Sostoyaniya Dvoynykh i Mnogokomponentnykh Sistem na Osnove Zheleza. M.: Metallurgiya, 1986. (in Russian).
16. Garrels R.M. Mineral'nye Ravnovesiya. M.: Mir, 1962. (in Russian)
---
For citation: Selivanov E.A., Petrova T.I. Methods for Calculating Thermodynamic Potentials in Estimating the Oxide Layer Composition on Metal Surfaces. Bulletin of MPEI. 2021;6:77—81. (in Russian). DOI: 10.24160/1993-6982-2021-6-77-81
---
The work is executed at support: RFBR (Project No. 19-38-90213\19)

