The Influence of Non-Condensable Gas on the Control Range of Variable-Conductivity Heat Pipes
DOI:
https://doi.org/10.24160/1993-6982-2022-1-51-57Keywords:
gas-controlled heat pipe, axial groove, coolant, non-condensable gas, variable conductivityAbstract
One of the important tasks to be solved in designing and manufacturing heat pipes (HP) is the determination of their thermal parameters, taking into account the specified geometry and coolant mass. The task becomes more complicated when in addition to the coolant, non-condensable gas (NG) appears in the heat pipe as a component forcedly introduced for control purposes. This generates the need to develop a model of transfer processes for the designs gas-controlled heat pipes (GCHP) based on widely used axial heat pipes (AHP), the body and the capillary structure of which are manufactured by extrusion as a whole, and to verify it with the developed structures.
Options of simulating the operation of an HP with axial grooves for various masses of non-condensable gas with taking into account thermal conductivity and diffusion are considered. This approach made it possible not only to assess the adequacy of the 2D model of heat and mass transfer in the vapor-gas front for a particular GCHP design, but also the possibility of using the same GCHP geometry with various masses of NG to improve the control accuracy.
The article presents a calculation for a GCHP with axial grooves, in which the reservoir volume and the evaporation and condensation zone lengths are predetermined.
A procedure for testing an axial heat pipe filled with a coolant and non-condensable gas is described. The results on the distribution of temperature fields in the GCHP operation modes with the minimal (10 W) and maximal (100 W) thermal loads at various condensation zone temperatures are obtained. The test results are compared with the calculated data, and a good agreement between them is shown.
Despite the fact that the correctness of the procedure has been confirmed, the test result in terms of requirements for the upper control temperature is negative. The required range is 15°C instead of its actual value equal to 32°C. A conclusion was drawn from this result that, given the existing external conditions, the considered pipe geometry cannot ensure the control range from 15 to 30°C. Based on this result, options with a larger reservoir volume without a significant change in the GCHP design and its external dimensions were proposed.
It is shown that the GCHP design with axial grooves and a reservoir in the form of an extended casing cannot ensure a control range of more than 25°C even with a ten-fold increase in the NG volume in view of the influence the coolant vapor entering the reservoir has on the NG temperature. Methods for improving the control accuracy are proposed.
References
2. Галактионов В.В., Труханова Л.П. Исследование процесса тепло- и массопереноса в области парогазового фронта газорегулируемой тепловой трубы // Инженерно-физический журнал. 1985. Т. 48. № 3. С. 409—414.
3. Галактионов В.В., Парфентьева А.А., Портнов В.Д., Сасин В.Я. Исследование границ парогазового фронта в конденсаторе плоской газорегулируемой тепловой трубы // Инженерно-физический журнал. 1982. Т. 42. № 3. С. 387—391.
4. Гончаров К.А., Панин Ю.В., Коржов К.Н., Гуткин А.Р. Тепловая труба переменной проводимостью для малых КА // Heat Pipes, Heat Pumps, Refrigerators, Power Sources: Труды Х Междунар. семинара. Минск, 2018.
5. William G. e. a. Walker Pressure Controlled HP Application // Proc. XVI Intern. Heat Pipe Conf. Lyon, 2012.
6. Faghri A. Heat Pipe Science and Technology. Washington: Taylor &Francis, 1995.
7. Гогишвили Г.Б. Моделирование тепловых процессов замкнутых испарительно-конденсационных устройств: автореф. дис …. канд. техн. наук. Тбилиси: Грузинский техн. ун-т, 1991.
8. Гончаров К.А., Кочетков А.Ю., Панин Ю.В., Антонов В.А., Кайя Т. Анализ циркуляции теплоносителя в артериальной тепловой трубе // Вестник «НПО им. С.А. Лавочкина» 2013. № 2(18). С. 20—25.
9. Чи С. Тепловые трубы. Теория и практика. М.: Машиностроение, 1981.
10. Панин Ю.В., Гончаров К.А., Коржов К.Н. Разработка аксиальной тепловой трубы переменной проводимости для СОТР КА // Материалы VI Росс. национ. конф. по теплообмену. М.: Издат. дом МЭИ, 2014. С. 855—858.
11. Peters C.J., Hartenstine J. R., Tarau C., Anderson W.G. Variable Conductance Heat Pipe for a Lunar Variable Thermal Link // Proc. 41 ICES. Portland, 2011. P. 5120.
12. Ellis M., Anderson W. Variable Conductance Heat Pipe after Extended Periods of Freezing // Proc. Space Propulsion & Energy Sci. Intern. Forum. N-Y., 2009.
---
Для цитирования: Савченкова Н.М., Панин Ю.В., Кузнецов И.О., Гончаров К.А., Холяков А.Е. Влияние неконденсирующегося газа на диапазон регулирования тепловых труб переменной проводимости // Вестник МЭИ. 2022. № 1. С. 51—57. DOI: 10.24160/1993-6982-2022-1-51-57.
#
1. Saad S.M.I., Ching C.Y., Ewing D. The Transient Response of Wicked Heat Pipes with Non-condensable Gas. Appl. Thermal Eng. 2012;37:403—411.
2. Galaktionov V.V., Trukhanova L.P. Issledovanie Protsessa Teplo- i Massoperenosa v Oblasti Parogazovogo Fronta Gazoreguliruemoy Teplovoy Truby. Inzhenerno-fizicheskiy Zhurnal. 1985;48;3:409—414. (in Russian).
3. Galaktionov V.V., Parfent'eva A.A., Portnov V.D., Sasin V.Ya. Issledovanie Granits Parogazovogo Fronta v Kondensatore Ploskoy Gazoreguliruemoy Teplovoy Truby. Inzhenerno-fizicheskiy Zhurnal. 1982;42;3:387—391. (in Russian).
4. Goncharov K.A., Panin Yu.V., Korzhov K.N., Gutkin A.R. Teplovaya truba Peremennoy Provodimost'yu dlya Malykh KA. Heat Pipes, Heat Pumps, Refrigerators, Power Sources: Trudy X Mezhdunar. Seminara. Minsk, 2018. (in Russian).
5. William G. e. a. Walker Pressure Controlled HP Application. Proc. XVI Intern. Heat Pipe Conf. Lyon, 2012.
6. Faghri A. Heat Pipe Science and Technology. Washington: Taylor &Francis, 1995.
7. Gogishvili G.B. Modelirovanie Teplovykh Protsessov Zamknutykh Isparitel'no-kondensatsionnykh Ustroystv: Avtoref. Dis …. Kand. Tekhn. Nauk. Tbilisi: Gruzinskiy Tekhn. Un-t, 1991. (in Russian).
8. Goncharov K.A., Kochetkov A.Yu., Panin Yu.V., Antonov V.A., Kayya T. Analiz Tsirkulyatsii Teplonositelya v Arterial'noy Teplovoy Trube. Vestnik «NPO im. S.A. Lavochkina» 2013;2(18):20—25. (in Russian).
9. Chi S. Teplovye Truby. Teoriya i Praktika. M.: Mashinostroenie, 1981. (in Russian).
10. Panin Yu.V., Goncharov K.A., Korzhov K.N. Razrabotka Aksial'noy Teplovoy Truby Peremennoy Provodimosti dlya SOTR KA. Materialy VI Ross. Natsion. Konf. po Teploobmenu. M.: Izdat. Dom MEI, 2014:855—858. (in Russian).
11. Peters C.J., Hartenstine J. R., Tarau C., Anderson W.G. Variable Conductance Heat Pipe for a Lunar Variable Thermal Link. Proc. 41 ICES. Portland, 2011:5120.
12. Ellis M., Anderson W. Variable Conductance Heat Pipe after Extended Periods of Freezing. Proc. Space Propulsion & Energy Sci. Intern. Forum. N-Y., 2009.
---
For citation: Savchenkova N.M., Panin Yu.V., Kuznetsov I.O., Goncharov K.A., Kholyakov A.E. The Influence of Non-Condensable Gas on the Control Range of Variable-Conductivity Heat Pipes. Bulletin of MPEI. 2022;1:51—57. (in Russian). DOI: 10.24160/1993-6982-2022-1-51-57.

