Options of Shaping a Symmetrical Seven-Phase Output Voltage of a Valve Converter
DOI:
https://doi.org/10.24160/1993-6982-2022-1-85-93Keywords:
seven-phase winding, seven-phase converter, converter logic states, spatial-vector voltage modulation, resulting and generalized discrete state vectorsAbstract
A seven-phase bridge converter has 128 logical states. When a seven-phase symmetric winding is connected to the converter, each logical state produces a spatial-temporal resulting voltage vector. In total, the converter can produce 126 active vectors and 2 zero vectors. The aim of the work is to study and classify the vector space in implementing the converter control algorithms performing spatial-vector modulation of the voltage by a seven-phase symmetric winding.
It has been determined that there are nine control algorithms that form a symmetrical seven-phase voltage with various phase voltage waveforms. Each waveform corresponds to a certain value of the phase voltage fundamental harmonic component. The fundamental harmonic amplitude corresponds to the modulus of the generalized spatial-temporal voltage vector of discrete states.
The vector spaces of phase voltage vectors corresponding to the converter logical states and shaping the resulting vectors, and also the vector spaces of generalized voltage vectors are investigated. The numerical values of the resulting and generalized voltage vectors are obtained.
In carrying out the study, the vector analysis methods and methods of expanding functions into Fourier series were used. The theoretical studies have been tested experimentally. The experiments were carried out on a bench intended for studying the spatial-vector modulation of multiphase motors using a prototype seven-phase motor.
The results can be used to implement nonlinear vector control systems for a seven-phase motor.
References
2. Томасов В.С., Усольцев А.А., Вертегел Д.А., Денисов К.М. Исследование пульсаций электромагнитного момента в прецизионном сервоприводе при синусоидальной широтно-импульсной модуляции // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 2. С. 359—368.
3. Усольцев A.A. Современный асинхронный электропривод оптико-механических комплексов. СПб.: ИТМО, 2011.
4. Калачев Ю.Н. Векторное регулирование (заметки практика) [Электрон. ресурс] www.avislab.com/blog/wpcontent/uploads/2016/11/Vector_Kalachev.pdf (дата обращения 09.09.2019).
5. Space Vector Pulse with Modulation MSS Software Implementation User Guide [Электрон. ресурс] www.microsemi.com/document-portal/doc_view/133495-space-vector-pulse-width-modulation-mss-software-implementation-user-guide/ (дата обращения 09.09.2019).
6. Texas Instruments Incorporated, Application Report Space-Vector PWM with TMS320C24x/F24x Using Hardware and Software Determined Switching Patterns [Электрон. ресурс] www.ti.com/lit/an/spra524/spra524.pdf (дата обращения 09.09.2019).
7. Электровоз грузовой постоянного тока 2ЭС10 (Гранит) с асинхронными тяговыми электродвигателями [Электрон. ресурс] www.twirpx.com/search/ (дата обращения 11.11.2019).
8. Chan C.C., Bouscayrol A., Chen K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling // IEEE Trans. Vehicular Technol. 2010. V. 59. No. 2. Pp. 589—598.
9. Guzman H. e. a. Application of DSP in Power Conversion Systems — a Practical Approach for Multiphase Drives [Электрон. ресурс] www.cdn.intechopen.com/pdfs-wm/48835.pdf (дата обращения 09.09.2019).
10. Голубев А.Н., Игнатенко C.B. Влияние числа фаз статорной обмотки асинхронного двигателя на его виброшумовые характеристики // Электротехника. 2000. № 6. С. 28—31.
11. Williamson S., Smith S. Pulsating Torque and Losses in Multiphase Induction Machines // IEEE Trans. Indust. Appl. 2003. V. 39. No. 4. Pp. 986—993.
12. Barrero F., Duran M.J. Recent Advances in the Design, Modeling, and Control of Multiphase Machines — Pt. I // IEEE Trans. Industrial Electronics. 2016. V. 63. No. 1. Pp. 449—455.
13. Prieto I.G., Duran M.J., Garcia-Entrambasaguas P., Bermudez M. Field-oriented Control of Multiphase Drives with Passive Fault Tolerance // IEEE Trans. Industrial Electronics. 2020. V. 67(9). Pp. 7228—7238.
14. Takahashi I., Noguchi T. A New Quick-response and High Efficiency Control Strategy of an Induction Motor // IEEE Trans. Industry Appl. 1986. V. IA-22. No. 5. Pp. 820—827.
15. Blaschke F. The Principle of Field Orientation as Applied to the New Transvector Closed-loop Control System for Rotating-Field Machines // Rev. 1972. V. 34. Pp. 217—220.
16. Tereshkin V.M., Grishin D.A., Balgazin I.I., Tereshkin V.V. Research of Control Algorithms for a Semiphasic Converter Implementing Spatial Vector Modulation // IEEE Intern. Conf. Electrotechnical Complexes and Systems. 2020. Pp. 383—387.
17. Терешкин В.М. Аналитический метод оценки вибраций электромагнитного происхождения в семифазной машине переменного тока // Вестник Ивановского гос. энергетического ун-та. 2019. № 1. С. 61—69.
18. Терешкин В.М., Аитов И.Л., Макулов И.А., Гришин Д.А. Влияние временной последовательности чередования фаз пятифазной обмотки на формирование результирующего вектора напряжения // Электротехника. 2020. № 12. С. 69—75.
---
Для цитирования: Терешкин В.М., Гришин Д.А., Баландин С.П., Терешкин В.В. Варианты формирования симметричного семифазного выходного напряжения вентильного преобразователя // Вестник МЭИ. 2022. № 1. С. 85—93. DOI: 10.24160/1993-6982-2022-1-85-93.
#
1. Kozyaruk A.E Sovremennye Effektivnye Elektroprivody Proizvodstvennykh i Transportnykh Mekhanizmov. Elektrotekhnika. 2019;3:3—37. (in Russian).
2. Tomasov V.S., Usol'tsev A.A., Vertegel D.A., Denisov K.M. Issledovanie Pul'satsiy Elektromagnitnogo Momenta v Pretsizionnom Servoprivode pri Sinusoidal'noy Shirotno-Impul'snoy Modulyatsii. Nauchno-tekhnicheskiy Vestnik Informatsionnykh Tekhnologiy, Mekhaniki i Optiki. 2019;19;2:359—368. (in Russian).
3. Usol'tsev A.A. Sovremennyy Asinkhronnyy Elektroprivod Optiko-mekhanicheskikh kompleksov. SPb.: ITMO, 2011. (in Russian).
4. Kalachev Yu.N. Vektornoe Regulirovanie (Zametki Praktika) [Elektron. Resurs] www.avislab.com/blog/wpcontent/uploads/2016/11/Vector_Kalachev.pdf (Data Obrashcheniya 09.09.2019). (in Russian).
5. Space Vector Pulse with Modulation MSS Software Implementation User Guide [Elektron. Resurs] www.microsemi.com/document-portal/doc_view/133495-space-vector-pulse-width-modulation-mss-software-implementation-user-guide/ (Data Obrashcheniya 09.09.2019).
6. Texas Instruments Incorporated, Application Report Space-Vector PWM with TMS320C24x/F24x Using Hardware and Software Determined Switching Patterns [Elektron. Resurs] www.ti.com/lit/an/spra524/spra524.pdf (Data Obrashcheniya 09.09.2019).
7. Elektrovoz Gruzovoy Postoyannogo Toka 2ES10 (Granit) s Asinkhronnymi Tyagovymi Elektrodvigatelyami [Elektron. Resurs] www.twirpx.com/search/ (Data Obrashcheniya 11.11.2019). (in Russian).
8. Chan C.C., Bouscayrol A., Chen K. Electric, Hybrid, and Fuel-cell Vehicles: Architectures and Modeling. IEEE Trans. Vehicular Technol. 2010;59;2:589—598.
9. Guzman H. e. a. Application of DSP in Power Conversion Systems — a Practical Approach for Multiphase Drives [Elektron. Resurs] www.cdn.intechopen.com/pdfs-wm/48835.pdf (Data Obrashcheniya 09.09.2019).
10. Golubev A.N., Ignatenko C.B. Vliyanie Chisla Faz Statornoy Obmotki Asinkhronnogo Dvigatelya na Ego Vibroshumovye Kharakteristiki. Elektrotekhnika. 2000;6:28—31. (in Russian).
11. Williamson S., Smith S. Pulsating Torque and Losses in Multiphase Induction Machines. IEEE Trans. Indust. Appl. 2003;39;4:986—993.
12. Barrero F., Duran M.J. Recent Advances in the Design, Modeling, and Control of Multiphase Machines — Pt. I. IEEE Trans. Industrial Electronics. 2016;63;1:449—455.
13. Prieto I.G., Duran M.J., Garcia-Entrambasaguas P., Bermudez M. Field-oriented Control of Multiphase Drives with Passive Fault Tolerance. IEEE Trans. Industrial Electronics. 2020;67(9):7228—7238.
14. Takahashi I., Noguchi T. A New Quick-response and High Efficiency Control Strategy of an Induction Motor. IEEE Trans. Industry Appl. 1986;IA-22;5:820—827.
15. Blaschke F. The Principle of Field Orientation as Applied to the New Transvector Closed-loop Control System for Rotating-Field Machines. Rev. 1972;34:217—220.
16. Tereshkin V.M., Grishin D.A., Balgazin I.I., Tereshkin V.V. Research of Control Algorithms for a Semiphasic Converter Implementing Spatial Vector Modulation. IEEE Intern. Conf. Electrotechnical Complexes and Systems. 2020:383—387.
17. Tereshkin V.M. Analiticheskiy Metod Otsenki Vibratsiy Elektromagnitnogo Proiskhozhdeniya v Semifaznoy Mashine Peremennogo Toka. Vestnik Ivanovskogo Gos. Energeticheskogo Un-ta. 2019;1:61—69. (in Russian).
18. Tereshkin V.M., Aitov I.L., Makulov I.A., Grishin D.A. Vliyanie Vremennoy Posledovatel'nosti Cheredovaniya Faz Pyatifaznoy Obmotki na Formirovanie Rezul'tiruyushchego Vektora Napryazheniya. Elektrotekhnika. 2020;12:69—75. (in Russian).
---
For citation: Tereshkin V.M., Grishin D.A., Balandin S.P., Tereshkin V.V. Options of Shaping a Symmetrical Seven-Phase Output Voltage of a Valve Converter. Bulletin of MPEI. 2022;1:85—93. (in Russian). DOI: 10.24160/1993-6982-2022-1-85-93.

