The Classification Quality Assessment Criterion Outside a Training Set

Authors

  • Анастасия [Anastasiya] Олеговна [O.] Гурина [Gurina]
  • Владимир [Vladimir] Леонидович [L.] Елисеев [Eliseev]

DOI:

https://doi.org/10.24160/1993-6982-2022-1-98-110

Keywords:

classification quality indicators, quality quantification, machine learning, adversarial attacks, reliability, accuracyaccuracy, completeness

Abstract

The article addresses a commonly encountered problem of classification based on machine learning models. Given that attempts to classify objects outside the training sample are prone to yield unpredictable results, the classifiers may operate incorrectly on new data and may also be vulnerable to adversarial attacks. It is conjectured that these problems can be avoided provided that a sufficiently complete assessment of the classifier quality is made. The effectiveness of applying the conventional approach to estimating the classification quality is analyzed. Disadvantages of the conventional quality indicators, which do not allow one to evaluate the risk of errors and degree of machine learning model susceptibility to adversarial attacks, are described. А new classification quality criterion is proposed, which includes four characteristics: Excess, Deficit, Coating, and Approx (EDCA). The characteristics are quantified based on the ratio between the size of the space occupied by the training sample and the results of the classification of all points of the discretized space of features in the working range of their values. An experimental study for visual assessment and comparison of the quality of two multiclass SVM classifiers on characteristic synthetic data sets using the conventional and proposed quality indicators is carried out. The effectiveness and advantage of the newly introduced indicators in comparison with the conventional ones is demonstrated. Good interpretability of the quality indicator values, as well as the subjective consistency between the metrics and expected results from comparison of two SVM classifiers is confirmed. There is a reason to believe that application of the new approach to quality assessment will make it possible to construct more reliable classifiers based on machine learning.

Author Biographies

Анастасия [Anastasiya] Олеговна [O.] Гурина [Gurina]

Ph.D-student of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: asya.gurina001512@yandex.ru

Владимир [Vladimir] Леонидович [L.] Елисеев [Eliseev]

Ph.D. (Techn.), Head of the Center for Scientific Research and Advanced Development of JSC «InfoTeCS», Assistant Professor of Control and Intelligent Technologies Dept., NRU MPEI, e-mail: vlad-eliseev@mail.ru

References

1. Шпрингер Е. 17 примеров применения машинного обучения в 5 отраслях бизнеса // Cloud Solutions [Электрон. ресурс] www.mcs.mail.ru/blog/17-primerov-mashinnogo-obucheniya. (дата обращения 03.06.2021).
2. From Roadblock to Scale: The Global Sprint Towards AI. New Research Commissioned by IBM in Partnership with Morning Consult. [Электрон. ресурс] www.filecache.mediaroom.com/mr5mr_ibmnews/183710/Roadblock-to-Scale-exec-summary.pdf (дата обращения 03.06.2021).
3. Pike S. Почему одного только машинного обучения недостаточно [Электрон. ресурс] www.kaspersky.ru/blog/ai-fails/18678/ (дата обращения 03.06.2021).
4. Goodfellow J.I., Shlens J., Sze Ch. Explaining and Harnessing Adversarial Examples. Mountain View: Google Inc., 2015.
5. Hern A. Want to Beat Facial Recognition? Get Some Funky Tortoiseshell Glasses. [Электрон. ресурс] www.theguardian.com/technology/2016/nov/03/how-funky-tortoiseshell-glasses-can-beat-facial-recognition (дата обращения 03.06.2021).
6. Гурина А.О., Елисеев В.Л. Нейросетевой метод классификации в условиях нестационарного множества классов // Информационные системы и технологии: Материалы XXVI Междунар. науч.-техн. конф. Н. Новгород : Изд-во Нижегородского гос. техн. ун-та им. Р.Е. Алексеева, 2020. С. 750—764.
7. Forman G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification // J. Machine Learning Research. 2003. V. 3. Pp. 1287—1305.
8. Powers D. Evaluation: From Precision, Recall and F-Factor to ROC. Techn. Rep. Informedness, Markedness&Correlation, 2007.
9. Fawcett T. An Introduction to ROC Analysis // Pattern Recognition Letters. 2006. V. 27. Pp. 861—874.
10. Szegedy Ch. e. a. Intriguing Properties of Neural Networks // Proc. Computer Vision and Pattern Recognition Conf. 2014. Pp. 248—255.
11. Harris M. Researchers Find a Malicious Way to Meddle with Autonomous Cars. [Электрон. ресурс] www.caranddriver.com/news/a15340148/researchers-find-a-malicious-way-to-meddle-with-autonomous-cars 2 (дата обращения 03.06.2021).
12. Robin J., Liang P. Adversarial Examples for Evaluating Reading Comprehension Systems. Computation and Language [Электрон. ресурс] www.arxiv.org/pdf/1707.07328.pdf (дата обращения 03.06.2021).
13. Kurakin A., Goodfellow I., Bengio S. Adversarial Examples in the Physical World [Электрон. ресурс] www.arxiv.org/abs/1607.02533 (дата обращения 03.06.2021).
14. Mahmood S. e. a. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-art Face Recognition // Proc. ACM SIGSAC Conf. 2016. Pp. 1528—1540.
15. Shafahi A. e. a. Are Adversarial Examples Inevitable? [Электрон. ресурс] www.arxiv.org/pdf/1809.02104.pdf (дата обращения 03.06.2021).
16. Гурина А.О., Елисеев В.Л. Эмпирический критерий качества одноклассовой классификации // Информационные системы и технологии: Материалы XXVII Междунар. науч.-техн. конф. Н. Новгород: Изд-во Нижегородского гос. техн. ун-та им. Р.Е. Алексеева, 2021. С. 673—682.
---
Для цитирования: Гурина А.О., Елисеев В.Л. Критерий оценки качества классификации за пределами обучающей выборки // Вестник МЭИ. 2022. № 1. С. 98—110. DOI: 10.24160/1993-6982-2022-1-98-110.
---
Работа выполнена при поддержке: РФФИ (проект № 20-37-90073)
#
1. Shpringer E. 17 Primerov Primeneniya Mashinnogo Obucheniya v 5 Otraslyakh Biznesa. Cloud Solutions [Elektron. Resurs] www.mcs.mail.ru/blog/17-primerov-mashinnogo-obucheniya. (Data Obrashcheniya 03.06.2021). (in Russian).
2. From Roadblock to Scale: The Global Sprint Towards AI. New Research Commissioned by IBM in Partnership with Morning Consult. [Elektron. Resurs] www.filecache.mediaroom.com/mr5mr_ibmnews/183710/Roadblock-to-Scale-exec-summary.pdf (Data Obrashcheniya 03.06.2021).
3. Pike S. Pochemu Odnogo Tol'ko Mashinnogo Obucheniya Nedostatochno [Elektron. Resurs] www.kaspersky.ru/blog/ai-fails/18678/ (Data Obrashcheniya 03.06.2021). (in Russian).
4. Goodfellow J.I., Shlens J., Sze Ch. Explaining and Harnessing Adversarial Examples. Mountain View: Google Inc., 2015.
5. Hern A. Want to Beat Facial Recognition? Get Some Funky Tortoiseshell Glasses. [Elektron. Resurs] www.theguardian.com/technology/2016/nov/03/how-funky-tortoiseshell-glasses-can-beat-facial-recognition (Data Obrashcheniya 03.06.2021).
6. Gurina A.O., Eliseev V.L. Neyrosetevoy Metod Klassifikatsii v Usloviyakh Nestatsionarnogo Mnozhestva Klassov. Informatsionnye Sistemy i Tekhnologii: Materialy XXVI Mezhdunar. Nauch.-tekhn. Konf. N. Novgorod : Izd-vo Nizhegorodskogo Gos. Tekhn. Un-ta im. R.E. Alekseeva, 2020:750—764. (in Russian).
7. Forman G. An Extensive Empirical Study of Feature Selection Metrics for Text Classification. J. Machine Learning Research. 2003;3:1287—1305.
8. Powers D. Evaluation: From Precision, Recall and F-Factor to ROC. Techn. Rep. Informedness, Markedness&Correlation, 2007.
9. Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters. 2006;27:861—874.
10. Szegedy Ch. e. a. Intriguing Properties of Neural Networks. Proc. Computer Vision and Pattern Recognition Conf. 2014:248—255.
11. Harris M. Researchers Find a Malicious Way to Meddle with Autonomous Cars. [Elektron. Resurs] www.caranddriver.com/news/a15340148/researchers-find-a-malicious-way-to-meddle-with-autonomous-cars 2 (Data Obrashcheniya 03.06.2021).
12. Robin J., Liang P. Adversarial Examples for Evaluating Reading Comprehension Systems. Computation and Language [Elektron. Resurs] www.arxiv.org/pdf/1707.07328.pdf (Data Obrashcheniya 03.06.2021).
13. Kurakin A., Goodfellow I., Bengio S. Adversarial Examples in the Physical World [Elektron. Resurs] www.arxiv.org/abs/1607.02533 (Data Obrashcheniya 03.06.2021).
14. Mahmood S. e. a. Accessorize to a Crime: Real and Stealthy Attacks on State-of-the-art Face Recognition. Proc. ACM SIGSAC Conf. 2016:1528—1540.
15. Shafahi A. e. a. Are Adversarial Examples Inevitable? [Elektron. Resurs] www.arxiv.org/pdf/1809.02104.pdf (Data Obrashcheniya 03.06.2021).
16. Gurina A.O., Eliseev V.L. Empiricheskiy Kriteriy Kachestva Odnoklassovoy Klassifikatsii. Informatsionnye Sistemy i Tekhnologii: Materialy XXVII Mezhdunar. Nauch.-tekhn. Konf. N. Novgorod: Izd-vo Nizhegorodskogo Gos. Tekhn. Un-ta im. R.E. Alekseeva, 2021:673—682. (in Russian).
---
For citation: Gurina A.O., Eliseev V.L. The Classification Quality Assessment Criterion Outside a Training Set. Bulletin of MPEI. 2022;1:98—110. (in Russian). DOI: 10.24160/1993-6982-2022-1-98-110.
---
The work is executed at support: RFBR (Project No. 20-37-90073)

Published

2021-07-21

Issue

Section

System Analysis, Control and Data Processing (05.13.01)