Development and Study of a Building Model on Lead Rubber Bearings

Authors

  • Владимир [Vladimir] Павлович [P.] Радин [Radin]
  • Елена [Elena] Викторовна [V.] Позняк [Poznyak]
  • Ольга [Olga] Валерьевна [V.] Новикова [Novikova]
  • Виктор [Viktor] Петрович [P.] Чирков [Chirkov]

DOI:

https://doi.org/10.24160/1993-6982-2022-2-105-112

Keywords:

lead rubber bearing, bilinear diagram, hysteretic behavior, artificial accelerograms, seismic isolated building model

Abstract

The building structures on the lead rubber bearings (seismic bearings) require nonlinear dynamic analysis in the time domain. However, in performing such analyses, it is quite difficult to assess the influence of the seismic bearing characteristics on structural dynamic response and quality of seismic isolation in a whole. To solve this problem, it is proposed to study simple nonlinear models with a small number of degrees of freedom.

A planar shear model of a three-storey building on lead rubber bearings implemented in the Matlab software is considered. Seismic excitation on the building is given by artificial accelerograms. When subjected to cyclic loads, the building seismic bearings show a significantly nonlinear behavior described by a bilinear deformation diagram with hysteresis.

The nonlinear equations of motion for a seismically isolated three-storey building are derived, and procedures for seismic load modeling and numerical integration of the equations of motion are described. The results of numerical simulation for various hysteresis parameters are obtained and analyzed, and conclusions about the seismic protection effectiveness are drawn.

The obtained study results may be of interest for design engineers from the viewpoint of elaborating their own simple models for testing seismic isolated building structures and studying the influence of various hysteresis parameters on the seismic isolation quality.

Author Biographies

Владимир [Vladimir] Павлович [P.] Радин [Radin]

Ph.D. (Techn.), Professor of Robotics, Mechatronics, Dynamics and Machine Strength Dept., NRU MPEI, e-mail: RadinVP@mpei.ru

Елена [Elena] Викторовна [V.] Позняк [Poznyak]

Dr.Sci. (Techn.), Professor of Robotics, Mechatronics, Dynamics and Machine Strength Dept., NRU MPEI, e-mail: PozniakYV@mpei.ru

Ольга [Olga] Валерьевна [V.] Новикова [Novikova]

Ph.D. (Techn.), Assistant Professor of Robotics, Mechatronics, Dynamics and Machine Strength Dept., NRU MPEI, e-mail: NovikovaOV@mpei.ru

Виктор [Viktor] Петрович [P.] Чирков [Chirkov]

Dr.Sci. (Techn.), Professor of Robotics, Mechatronics, Dynamics and Machine Strength Dept., NRU MPEI, e-mail: ChirkovVP@mpei.ru

References

1. Резинометаллические изоляторы со свинцовым сердечником серии LRB. Техническая документация FIP Industriale [Электрон. ресурс] www.fipmec.it/ (дата обращения 05.10.2021.)

2. Saiful Islam A.B.M. е. a. Nonlinear Dynamically Automated Excursions for Rubber-steel Bearing Isolation in Multi-storey Construction // Automation in Construction. 2013. V. 30. Pp. 265—275. www.doi.org/10.1016/j.autcon. 2012.11.010.

3. Shoaei P. e. a. Seismic Reliability-based Design of Inelastic Base-isolated Structures with Lead-Rubber Bearing Systems // Soil Dynamics and Earthquake Eng. 2018. V. 115. Pp. 589—605. www.doi.org/10.1016/j.soil-dyn.2018.09.033.

4. Martakis P. e. a. Nonlinear Periodic Foundations for Seismic Protection: Practical design, Realistic Evaluation and Stability Considerations // Soil Dynamics and Earthquake Eng. 2021. V. 150. P. 106934. www.doi.org/10.1016/j.soildyn.2021.106934.

5. Kazeminezhad E. e. a. Modified Procedure of Lead Rubber Isolator Design Used in the Reinforced Concrete Building // Structures. 2020. V. 27. Pp. 2245—2273. www.doi.org/10.1016/j.istruc.2020.07.056.

6. Калиткин Н.Н. Численные методы. М.: Наука, 1972.

7. Болотин В.В. Статистическая теория сейсмостойкости сооружений // Известия АН СССР. Серия «Механика и машиностроение». 1959. № 4. C. 123—129.

8. Bolotin V.V. Statistical Theory of the Aseismic Design of Structures // Proc. Second World Conf. Earthquake Eng. 1960. V. 2. Pp. 1365—1374.

9. Болотин В.В., Радин В.П., Чирков В.П. Моделирование динамических процессов в элементах строительных конструкций при землетрясениях // Известия вузов. Серия «Строительство». 1999. № 5. С. 17—21.

10. Болотин В.В., Радин В.П., Чирков В.П. Исследование поведения зданий и сооружений со снижением жесткости при сейсмических воздействиях // Известия вузов. Серия «Строительство». 2003. № 7. С. 6—10.

11. Apostolakis G., Dargush G.F. Optimal Seismic Design of Moment-resisting Steel Frames with Hysteretic Passive Devices // Earthquake Eng. & Structural Dynamics. 2010. V. 39(4). Pp. 355—376. www.doi.org/10.1002/eqe.944.

---

Для цитирования: Радин В.П., Позняк Е.В., Новикова О.В., Чирков В.П. Разработка и исследование модели здания на резинометаллических сейсмоопорах // Вестник МЭИ. 2022. № 2. С. 105—112. DOI: 10.24160/1993-6982-2022-2-105-112.

#

1. Rezinometallicheskie Izolyatory so Svintsovym Serdechnikom Serii LRB. Tekhnicheskaya Dokumentatsiya FIP Industriale [Elektron. Resurs] www.fipmec.it/ (Data Obrashcheniya 05.10.2021.) (in Russian).

2. Saiful Islam A.B.M. e. a. Nonlinear Dynamically Automated Excursions for Rubber-steel Bearing Isolation in Multi-storey Construction. Automation in Construction. 2013;30:265—275. www.doi.org/10.1016/j.autcon. 2012. 11.010.

3. Shoaei P. e. a. Seismic Reliability-based Design of Inelastic Base-isolated Structures with Lead-Rubber Bearing Systems. Soil Dynamics and Earthquake Eng. 2018;115:589—605. www.doi.org/10.1016/j.soildyn.2018. 09.033.

4. Martakis P. e. a. Nonlinear Periodic Foundations for Seismic Protection: Practical design, Realistic Evaluation and Stability Considerations. Soil Dynamics and Earthquake Eng. 2021;150:106934. www.doi.org/10.1016/ j.soildyn.2021.106934.

5. Kazeminezhad E. e. a. Modified Procedure of Lead Rubber Isolator Design Used in the Reinforced Concrete Building. Structures. 2020;27:2245—2273. www.doi.org/ 10.1016/j.istruc.2020.07.056.

6. Kalitkin N.N. Chislennye Metody. M.: Nauka, 1972. (in Russian).

7. Bolotin V.V. Statisticheskaya Teoriya Seysmostoykosti Sooruzheniy. Izvestiya AN SSSR. Seriya «Mekhanika i Mashinostroenie». 1959;4:123—129. (in Russian).

8. Bolotin V.V. Statistical Theory of the Aseismic Design Of Structures. Proc. Second World Conf. Earthquake Eng. 1960;2:1365—1374.

9. Bolotin V.V., Radin V.P., Chirkov V.P. Modelirovanie Dinamicheskikh Protsessov v Elementakh Stroitel'nykh Konstruktsiy pri Zemletryaseniyakh. Izvestiya Vuzov. Seriya «Stroitel'stvo». 1999;5:17—21. (in Russian).

10. Bolotin V.V., Radin V.P., Chirkov V.P. Issledovanie Povedeniya Zdaniy i Sooruzheniy so Snizheniem Zhestkosti pri Seysmicheskikh Vozdeystviyakh. Izvestiya Vuzov. Seriya «Stroitel'stvo». 2003;7:6—10. (in Russian).

11. Apostolakis G., Dargush G.F. Optimal Seismic Design of Moment-resisting Steel Frames with Hysteretic Passive Devices. Earthquake Eng. & Structural Dynamics. 2010;39(4):355—376. www.doi.org/10.1002/eqe.944.

---

For citation: Radin V.P., Poznyak E.V., Novikova O.V., Chirkov V.P. Development and Study of a Building Model on Lead Rubber Bearings. Bulletin of MPEI. 2022;2:105—112. (in Russian). DOI: 10.24160/1993-6982-2022-2-105-112.

Published

2021-09-08

Issue

Section

Mathematical Modeling, Numerical Methods and Program Complexe (05.13.18)