Technological Connection of Syria’s Electric Power System to the DESERTEC System
DOI:
https://doi.org/10.24160/1993-6982-2022-5-20-29Keywords:
HVDC transmissions, LCC-HVDC, VSC-HVDC, MTDC, DESERTEC, renewable energy sources, Syrian Arab RepublicAbstract
Technical progress leads to a growth of electricity consumption, due to which countries face the need to look for various sources of energy, including renewable ones. Owing to advances in the development of renewable energy, several large-scale projects have appeared in the world to build a global energy system uniting a number of countries with power plants based on renewable energy sources, DESERTEC being one of such projects. The aim of this project is to optimize the use of renewable energy sources by interconnecting the countries of Middle East, North Africa and Europe using HVDC power lines. The article presents possible options for connecting the Syrian Arab Republic’s 400 kV AC electric power system to the DESERTEC project’s HVDC grid. Various types of converters for use in HVDC power lines are considered, and their advantages and drawbacks are identified. Electrical operation modes in the DC and AC networks are analyzed, and the values of active power losses and voltage drops are determined for the cases of using unipolar and bipolar HVDC transmission systems. Conclusions about the effect the connection of Syrian systems to the DESERTEC network are drawn. The factors influencing the choice of the HVDC transmission type are determined.
References
2. Pavlík M., Zbojovský J., German-Sobek M. Vision of the Project DESERTEC // Renewable Energy Sources. 2012. Pp. 19—22.
3. Bartolot J e. a. DESERT Power : Getting Started [Электрон. ресурс] www.dii-desertenergy.org/wp-content/uploads/2016/12/Desert-Power-Getting-Started-Full-Report-English-Screen1.pdf (дата обращения 20.01.2022).
4. AG Siemens. HVDC. High Voltage Direct Current Transmission often is the Best Strategy [Электрон. ресурс] www.brown.edu/Departments/Engineering/Courses/ENGN1931F/HVDC_Proven_TechnologySiemens.pdf (дата обращения 20.01.2022).
5. Akkari S. Control of a Multi-terminal HVDC (MTDC) System and Study of Its Interactions with the AC Grids. Thèse de Doctorat De l’ Université Paris-Saclay Préparée à l’ École CentraleSupélec, 2016. Pp. 15—26.
6. Mukhedkar R. Introduction to HVDC LCC & VSC – Comparison HVDC Converter Technology. South Asia Reg. Initiat. Energy Integr., 2010. Pp. 1—9.
7. Akerberg M. Comparison of HVDC Light (VSC) and HVDC Classic (LCC) Site Aspects, for a 500MW 400kV HVDC Transmission Scheme // Proc. IET ACDC Conf. 2012. Pp. 1—6.
8. Padiyar K. Multiterminal and Multi-infeed DC Systems. New Delhi: New Age Intern. Ltd. Publ., 2015. Pp. 204—218.
9. Nasyrov R., Alwazah I., Aljendy R. Solving Problem of Electric Power Shortage Using HVDC // Proc. Intern. Ural Conf. Electrical Power Eng. 2019. Pp. 203—207.
10. Pinto R. Multi-terminal DC Networks System Integration, Dynamics and Control // Engenheiro Eletricista, Escola Politécnica da Universidade de São Paulo Laurea Specialistica in Ingegneria Elettrica. Politecnico di Torino geboren te São Paulo, 2014. Pp. 15—38.
11. Wang F., Bertling L., Le T. An Overview Introduction of VSC-HVDC: State-of-art and Potential Applications in Electric Power Systems // Proc. CIGRE Symp. Electr. Power Syst. Futur. Integr. Supergrids Microgrids. 2011. Pp. 1—6.
12. Björk J., Johansson K., Harnefors L. Analysis of Coordinated HVDC Control for Power Oscillation Damping // Proc. Conf. Rec 3rd IEEE Int. Work Electron Power Grid, eGrid, 2018. Pp. 1—6.
13. Alwazah I., Nasyrov R., Shaban F. The Importance of Grounding in HVDC Power Transmission Systems // Proc. International Ural Conf. Electrical Power Eng. 2020. Pp. 131—135.
14. Buigues G. e. a. Present and Future Multiterminal HVDC systems: Current Status and Forthcoming Developments. Renew Energy Power Qual., 2017. Pp. 83—88.
15. Nazari M. Control of DC Voltage in Multi-terminal HVDC Transmission (MTDC) Systems. Stockholm: Licentiate Thesis in Electrical Eng., 2014.
16. Alwazah I., Nasyrov R., Aljendy R. Analysis of the Performance of Syrian 400 kV Electrical Network // Proc. International Ural Conf. Electrical Power Eng. 2020. Pp. 200—204.
17. Tiara D., Muhammad A., Masruhim R. Study for Updating Syrian Electricity Sector in Syrian Arab Republic. Lab Penelit dan Pengemb FARMAKA Trop Fak. Farm Univ., 2016. Pp. 5—24.
18. Public Establishment of Electricity for Generation. Syrian Ministry of Electricity, 2017 [Электрон. ресурс] www.eib.org/attachments/pipeline/20080244_eia_en.pdf (дата обращения 20.01.2022).
19. PETE. Syrian Ministry of Electricity. General Electricity Transmission Corporation, 2016.
---
Для цитирования: Алваза И., Бурмейстер М.В., Насыров Р.Р. Технологическое присоединение электрической сети Сирии к сети DESERTEC // Вестник МЭИ. 2022. № 5. С. 20—29. DOI: 10.24160/1993-6982-2022-5-20-29
#
1. Calzadilla A., Wiebelt M., Blohmke J. Desert Power 2050: Regional and Sectoral Impacts of Renewable Electricity Production in Europe, the Middle East and North Africa. Kiel Working Papers, 2014.
2. Pavlík M., Zbojovský J., German-Sobek M. Vision of the Project DESERTEC. Renewable Energy Sources. 2012:19—22.
3. Bartolot J e. a. DESERT Power : Getting Started [Elektron. Resurs] www.dii-desertenergy.org/wp-content/uploads/2016/12/Desert-Power-Getting-Started-Full-Report-English-Screen1.pdf (Data Obrashcheniya 20.01.2022).
4. AG Siemens. HVDC. High Voltage Direct Current Transmission often is the Best Strategy [Elektron. Resurs] www.brown.edu/Departments/Engineering/Courses/ENGN1931F/HVDC_Proven_TechnologySiemens.pdf (Data Obrashcheniya 20.01.2022).
5. Akkari S. Control of a Multi-terminal HVDC (MTDC) System and Study of Its Interactions with the AC Grids. Thèse de Doctorat De l’ Université Paris-Saclay Préparée à l’ École CentraleSupélec, 2016:15—26.
6. Mukhedkar R. Introduction to HVDC LCC & VSC – Comparison HVDC Converter Technology. South Asia Reg. Initiat. Energy Integr., 2010:1—9.
7. Akerberg M. Comparison of HVDC Light (VSC) and HVDC Classic (LCC) Site Aspects, for a 500MW 400kV HVDC Transmission Scheme. Proc. IET ACDC Conf. 2012:1—6.
8. Padiyar K. Multiterminal and Multi-infeed DC Systems. New Delhi: New Age Intern. Ltd. Publ., 2015:204—218.
9. Nasyrov R., Alwazah I., Aljendy R. Solving Problem of Electric Power Shortage Using HVDC. Proc. Intern. Ural Conf. Electrical Power Eng. 2019:203—207.
10. Pinto R. Multi-terminal DC Networks System Integration, Dynamics and Control. Engenheiro Eletricista, Escola Politécnica da Universidade de São Paulo Laurea Specialistica in Ingegneria Elettrica. Politecnico di Torino geboren te São Paulo, 2014:15—38.
11. Wang F., Bertling L., Le T. An Overview Introduction of VSC-HVDC: State-of-art and Potential Applications in Electric Power Systems. Proc. CIGRE Symp. Electr. Power Syst. Futur. Integr. Supergrids Microgrids. 2011:1—6.
12. Björk J., Johansson K., Harnefors L. Analysis of Coordinated HVDC Control for Power Oscillation Damping. Proc. Conf. Rec 3rd IEEE Int. Work Electron Power Grid, eGrid, 2018:1—6.
13. Alwazah I., Nasyrov R., Shaban F. The Importance of Grounding in HVDC Power Transmission Systems. Proc. International Ural Conf. Electrical Power Eng. 2020:131—135.
14. Buigues G. e. a. Present and Future Multiterminal HVDC systems: Current Status and Forthcoming Developments. Renew Energy Power Qual., 2017:83—88.
15. Nazari M. Control of DC Voltage in Multi-terminal HVDC Transmission (MTDC) Systems. Stockholm: Licentiate Thesis in Electrical Eng., 2014.
16. Alwazah I., Nasyrov R., Aljendy R. Analysis of the Performance of Syrian 400 kV Electrical Network. Proc. International Ural Conf. Electrical Power Eng. 2020:200—204.
17. Tiara D., Muhammad A., Masruhim R. Study for Updating Syrian Electricity Sector in Syrian Arab Republic. Lab Penelit dan Pengemb FARMAKA Trop Fak. Farm Univ., 2016:5—24.
18. Public Establishment of Electricity for Generation. Syrian Ministry of Electricity, 2017 [Elektron. Resurs] www.eib.org/attachments/pipeline/20080244_eia_en.pdf (Data Obrashcheniya 20.01.2022).
19. PETE. Syrian Ministry of Electricity. General Electricity Transmission Corporation, 2016.
---
For citation: Alwazah I., Burmeyster M.V., Nasyrov R.R. Technological Connection of Syria’s Electric Power System to the DESERTEC System. Bulletin of MPEI. 2022;5:20—29. (in Russian). DOI: 10.24160/1993-6982-2022-5-20-29

