A Parametric МА-Algorithm for Gaussian Time Series Change Point Detection from Mathematical Expectation
DOI:
https://doi.org/10.24160/1993-6982-2022-5-112-120Keywords:
time series change, time series change online detection, detection algorithms, moving average algorithm, MA-algorithm probabilistic characteristicsAbstract
The problem of online detection of a Gaussian time series change connected with a spontaneous abrupt change in its mathematical expectation is solved. For solving the problem, it is proposed to use a parametric controlling algorithm based on the Moving Average method or the MA- algorithm. It is noted that, despite the fact that this algorithm has been known almost since the first works in the field of statistical control, its properties, capabilities, and efficiency in comparison with other change detection algorithms are still (for a number of reasons) have been studied to a very poor extent. The purpose of this work is to thoroughly study the MA-algorithm’s characteristics with the aim to synthesize an optimal time series change detection procedure. The study was carried out using a simulation modeling method. The article presents the structure and element-wise description of the simulation experiment program, which fully replicates the MA-algorithm operation in the online mode. By using the developed program, it has been found that the conventional way of setting the control procedure deciding threshold h, the value of which should provide the preset value of the average time between false alarms, when an alarm signal about the appearance of a change is generated, although in reality the object remains in the "normal" state, is invalid. For a fixed series of the above-mentioned quantities, the correct values of the threshold h are obtained depending on the width of the moving averaging window N of the controlling MA-algorithm. Similarly, the values of the average delay time of producing an alarm signal when a change with the given fixed level appears. Based on the data obtained, dependences of the control procedure efficiency indicator E on N for a set of different values of average time between false alarms and have been found. It has been shown that for each such set there is a value of N at which the control procedure is most effective. This optimal procedure is compared with a similar procedure of the cumulative sum algorithm (a CUSUM algorithm), and it has been shown from the comparison results that the MA-algorithm is in general only slightly inferior to the CUSUM algorithm in efficiency, and in some cases even outperforms it.
References
2. Носкова А.И., Токранова М.В. Обзор автоматизированных систем мониторинга // Интеллектуальные технологии на транспорте. 2017. № 1. С. 42—47.
3. Еремин Н.А. и др. Информационная автоматизированная система мониторинга и анализа технологических данных объектов нефтегазодобычи // Автоматизация, телемеханизация и связь в нефтяной промышленности. 2020. № 2. С. 11—20.
4. Funk P., Xiong N. Why We Need to Move to Intelligent and Experience Based Monitoring and Diagnostic Systems // Proc. 23th Intеrn. Conf. Condition Monitoring and Diagnostic Eng. Management. 2010. Pp. 111—115.
5. Roberts S.W. A Comparison of Some Control Chart Procedures // Technometrcs. 1966. V. 8(3). Pp. 411—430.
6. Shewhart W.A. Quality Control Charts // Bell Syst. Techn. J. 1926. V. 5. Pp. 593—603.
7. Мurdoch J. Control Charts. London: Macmillen Press, 1979.
8. Адлер Ю.П., Максимова О.В., Шпер В.Л. Контрольные карты Шухарта в России и за рубежом: краткий обзор современного состояния (статистические аспекты) // Стандарты и качество. 2011. № 7. С. 82—87; № 8. С. 82—87.
9. Montgomery D.C. Statistical Quality Control: a Modern Introduction. N.-Y.: John Wiley & Sons Inc., 2009.
10. Page E.S. Continuous Inspection Schemes // Biometrika. 1954. V. 41(1). Pp. 100— 115.
11. Никифоров И.В. Последовательное обнаружение изменения свойств временных рядов. М.: Наука, 1983.
12. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. М.: ЮНИТИ, 1998.
13. Roberts S.W. Control Chart Tests Based on Geometric Moving Averages // Technometrics. 1959. V. 1(3). Pp. 239—250.
14. Репин Д.С., Филаретов Г.Ф. Методические аспекты исследования алгоритмов обнаружения разладки временных рядов // Информационные технологии в науке, образовании и управлении. 2020. № 1. С. 27—32.
15. Ширяев А.Н. Задача скорейшего обнаружения нарушения стационарного режима // Доклады АН СCСР. 1961. Т. 138. № 5. С. 1039—1042
---
Для цитирования: Филаретов Г.Ф., Ларин А.А., Локтюшов В.А. Параметрический МА-алгоритм обнаружения разладки гауссовского временного ряда по математическому ожиданию // Вестник МЭИ. 2022. № 5. С. 112—120. DOI: 10.24160/1993-6982-2022-5-112-120
#
1. Shafid Ahmad. Bibliometric Analysis of EWMA and CUSUM Control Chart Schemes. Intern. J. Information Technol. and Electrical Eng. 2018;7(2):1—11.
2. Noskova A.I., Tokranova M.V. Obzor Avtomatizirovannykh Sistem Monitoringa. Intellektual'nye Tekhnologii na Transporte. 2017;1:42—47. (in Russian).
3. Eremin N.A. i dr. Informatsionnaya Avtomatizirovannaya Sistema Monitoringa i Analiza Tekhnologicheskikh Dannykh Obektov Neftegazodobychi. Avtomatizatsiya, Telemekhanizatsiya i Svyaz' v Neftyanoy Promyshlennosti. 2020;2:11—20. (in Russian).
4. Funk P., Xiong N. Why We Need to Move to Intelligent and Experience Based Monitoring and Diagnostic Systems. Proc. 23th Intern. Conf. Condition Monitoring and Diagnostic Eng. Management. 2010:111—115.
5. Roberts S.W. A Comparison of Some Control Chart Procedures. Technometrcs. 1966;8(3):411—430.
6. Shewhart W.A. Quality Control Charts. Bell Syst. Techn. J. 1926;5:593—603.
7. Murdoch J. Control Charts. London: Macmillen Press, 1979.
8. Adler Yu.P., Maksimova O.V., Shper V.L. Kontrol'nye Karty Shukharta v Rossii i za Rubezhom: Kratkiy Obzor Sovremennogo Sostoyaniya (Statisticheskie Aspekty). Standarty i Kachestvo. 2011;7:82—87; 8:82—87. (in Russian).
9. Montgomery D.C. Statistical Quality Control: a Modern Introduction. N.-Y.: John Wiley & Sons Inc., 2009.
10. Page E.S. Continuous Inspection Schemes. Biometrika. 1954;41(1):100— 115.
11. Nikiforov I.V. Posledovatel'noe Obnaruzhenie Izmeneniya Svoystv Vremennykh Ryadov. M.: Nauka, 1983. (in Russian).
12. Ayvazyan S.A., Mkhitaryan V.S. Prikladnaya Statistika i Osnovy Ekonometriki. M.: YUNITI, 1998. (in Russian).
13. Roberts S.W. Control Chart Tests Based on Geometric Moving Averages. Technometrics. 1959;1(3):239—250.
14. Repin D.S., Filaretov G.F. Metodicheskie Aspekty Issledovaniya Algoritmov Obnaruzheniya Razladki Vremennykh Ryadov. Informatsionnye Tekhnologii v Nauke, Obrazovanii i Upravlenii. 2020;1:27—32. (in Russian).
15. Shiryaev A.N. Zadacha Skoreyshego Obnaruzheniya Narusheniya Statsionarnogo Rezhima. Doklady AN SCSR. 1961;138;5:1039—1042. (in Russian)
---
For citation: Filaretov G.F., Larin A.A., Loktyushov V.A. A Parametric МА-Algorithm for Gaussian Time Series Change Point Detection from Mathematical Expectation. Bulletin of MPEI. 2022;5:112—120. (in Russian). DOI: 10.24160/1993-6982-2022-5-112-120

