Estimating the Potential Accuracy of Some Orbital Parameters from Angular Measurements: a 2D model
DOI:
https://doi.org/10.24160/1993-6982-2022-5-133-144Keywords:
angular measurements, orbital parameters, unfavorable orbits, impact point and moment, estimation accuracy, Fisher matrixAbstract
The problem of estimating some parameters of a cosmic body orbits from angular measurements is considered. Contrary to the existing opinion that angular measurements are unsuitable for obtaining accuracies that are of practical interest, it is shown that, if the orbit is such that the impact place is in the vicinity of the observer, then such parameters as the impact point and time can be determined with quite acceptable accuracy.
A fairly simple means for evaluating the accuracy of the "motion-measurement" process by reducing it to an analysis in a plane is described. The analysis is based on several principles. A family of orbits unfavorable to the observer is singled out, and an analysis is performed on this family. These are orbits whose plane touches the observer's Earth parallel, with the touching point being the intersection point of the observer and cosmic body trajectories. The article substantiates a simple approximate plane model, in which the observer’s true motion is replaced without changing its velocity by motion in the orbit plane. Information about the impact point is contained in the observations when the height decreases, which makes it possible to consider the gravity acceleration of as a constant in the descending mode. The motion model is simplified compared with the Keplerian motion: a simple motion scheme is obtained in the polar coordinate system. As a result, it becomes unnecessary to solve the differential equation representing the change in acceleration. A measurement formula that takes into account the Earth curvature and the observer latitude is derived, and the parameters determining the analyzed scheme are added: the distance to the impact point, incidence angle and impact moment, and horizontal velocity. The model accuracy is analyzed using the Fisher matrix. As a result, an approximate problem on a plane with four parameters is obtained instead of a problem in 3D space with seven parameters. The difficulties with the accuracy of estimating the displacement and impact moment in the model remain, and they are analyzed. The accuracy is estimated using the concept of Fisher information and the multidimensional Rao-Kramer information inequality instead of analyzing the processing algorithm.
References
2. Chang C.B., Tabaczynski J. Application of State Estimation to Target Tracking // IEEE Trans. Automatic Control. 1984. V. 29. No. 2. Pp. 98—109.
3. Саврасов Ю.С. Методы определения орбит космических объектов. М.: Машиностроение, 1981.
4. Саврасов Ю.С. Алгоритмы и программы в радиолокации. М.: Радио и связь, 1985.
5. Колесса А.Е. Пругло А.В., Равдин С.С. Восстановление орбит по угловым измерениям // Радиотехника. 2005. № 10. С. 5—9.
6. Колесса А.Е. Рекуррентные алгоритмы фильтрации для некоторых систем с нелинейностями кусочно-линейного типа // Автоматика и телемеханика. 1986. № 4. С. 48—55.
7. Колесса А.Е. Некоторые прикладные вопросы рекуррентной кусочно-линейной фильтрации // Автоматика и телемеханика. 1986. № 5. С. 61—69.
8. Колесса А.Е. Точные формулы оптимальной фильтрации для нестационарной кусочно-линейной задачи оценивания параметра // Автоматика и телемеханика. 1989. № 12. С. 69—80.
9. Булычев, В.Ю., Булычев Ю.Г., Ивакина С.С. Пассивная локация на основе угловых и мощностных измерений системы пеленгаторов // Известия РАН. Серия «Теории и системы управления». 2014. № 1. С. 65 —73.
10. Булычев В. Ю. и др. Угломерно-энергетический метод нестационарной пассивной локации на базе однопозиционной системы // Известия РАН. Серия «Теории и системы управления». 2015. № 5. С. 122—136.
11. Farina A., Benvenuti D., Ristic B. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters // IEEE Trans. Aerospace and Electronic Syst. 2002. V. 38. No. 3. Pp. 854—867.
12. Farina A., Ristic B., Timmoneri L. Cramer-Rao Bound for Nonlinear Filtering with Pd < 1 and Its Application to Target Tracking // IEEE Trans. Signal Proc. 2002. V. 50. No. 8. Pp. 1916—1924.
13. Ristic B., Farina A., Benvenuti D., Arulampalam M.S. Performance Bounds and Comparison of Nonlinear Filters for Tracking a Ballistic Object on Re-entry // IEEE Proc. Radar, Sonar and Navigation. 2003. V. 150. No. 2. Pp. 65—70.
14. Горицкий Ю.А., Тигетов Д.Г., Ануфриев А.М. Двумерная модель для оценки эффективности угловых измерений по эллиптическим орбитам // Известия РАН. Серия «Теория и системы управления». 2021. № 2. С. 14—24.
15. Горицкий Ю.А., Тигетов Д.Г, Китова Е.В. Вероятностный анализ требований к угломерной системе обнаружения смещения эллиптической орбиты // Вестник МЭИ. 2020. № 6. С. 101—109
---
Для цитирования: Горицкий Ю.А., Захарова А.И. Оценка потенциальной точности некоторых параметров орбит по угловым измерениям: двумерная модель // Вестник МЭИ. 2022. № 5. С. 133—144. DOI: 10.24160/1993-6982-2022-5-133-144
#
1. Chang C.B. Optimal State Estimation of Ballistic Trajectories with Angle-only Measurements. Lexington: MIT Lincoln Laboratory, 1979.
2. Chang C.B., Tabaczynski J. Application of State Estimation to Target Tracking. IEEE Trans. Automatic Control. 1984;29;2:98—109.
3. Savrasov Yu.S. Metody Opredeleniya Orbit Kosmicheskikh Ob'ektov. M.: Mashinostroenie, 1981. (in Russian).
4. Savrasov Yu.S. Algoritmy i Programmy v Radiolokatsii. M.: Radio i Svyaz', 1985. (in Russian).
5. Kolessa A.E. Pruglo A.V., Ravdin S.S. Vosstanovlenie Orbit po Uglovym Izmereniyam. Radiotekhnika. 2005;10:5—9. (in Russian).
6. Kolessa A.E. Rekurrentnye Algoritmy Fil'tratsii dlya Nekotorykh Sistem s Nelineynostyami Kusochno-lineynogo Tipa. Avtomatika I Telemekhanika. 1986;4:48—55. (in Russian).
7. Kolessa A.E. Nekotorye Prikladnye Voprosy Rekurrentnoy Kusochno-lineynoy Fil'tratsii. Avtomatika i Telemekhanika. 1986;5:61—69. (in Russian).
8. Kolessa A.E. Tochnye Formuly Optimal'noy Fil'tratsii dlya Nestatsionarnoy Kusochno-lineynoy Zadachi Otsenivaniya Parametra. Avtomatika i Telemekhanika. 1989;12:69—80. (in Russian).
9. Bulychev, V.Yu., Bulychev Yu.G., Ivakina S.S. Passivnaya Lokatsiya na Osnove Uglovykh i Moshchnostnykh Izmereniy Sistemy Pelengatorov. Izvestiya RAN. Seriya «Teorii i Sistemy Upravleniya». 2014;1:65 —73. (in Russian).
10. Bulychev V. Yu. i dr. Uglomerno-energeticheskiy Metod Nestatsionarnoy Passivnoy Lokatsii na Baze Odnopozitsionnoy Sistemy. Izvestiya RAN. Seriya «Teorii i Sistemy Upravleniya». 2015;5:122—136. (in Russian).
11. Farina A., Benvenuti D., Ristic B. Tracking a Ballistic Target: Comparison of Several Nonlinear Filters. IEEE Trans. Aerospace and Electronic Syst. 2002;38;3:854—867.
12. Farina A., Ristic B., Timmoneri L. Cramer-Rao Bound for Nonlinear Filtering with Pd < 1 and Its Application to Target Tracking. IEEE Trans. Signal Proc. 2002;50;8:1916—1924.
13. Ristic B., Farina A., Benvenuti D., Arulampalam M.S. Performance Bounds and Comparison of Nonlinear Filters for Tracking a Ballistic Object on Re-entry. IEEE Proc. Radar, Sonar and Navigation. 2003;150;2:65—70.
14. Goritskiy Yu.A., Tigetov D.G., Anufriev A.M. Dvumernaya Model' dlya Otsenki Effektivnosti Uglovykh Izmereniy po Ellipticheskim Orbitam. Izvestiya RAN. Seriya «Teoriya i Sistemy Upravleniya». 2021;2:14—24. (in Russian).
15. Goritskiy Yu.A., Tigetov D.G, Kitova E.V. Veroyatnostnyy Analiz Trebovaniy k Uglomernoy Sisteme Obnaruzheniya Smeshcheniya Ellipticheskoy Orbity. Vestnik MEI. 2020;6:101—109. (in Russian)
---
For citation: Goritsky Yu.A., Zakharova A.I. AEstimating the Potential Accuracy of Some Orbital Parameters from Angular Measurements: a 2D model. Bulletin of MPEI. 2022;5:133—144. (in Russian). DOI: 10.24160/1993-6982-2022-5-133-144

