On Solving Initial Boundary Value Problems for a Parabolic Equation in Dini Classes

Authors

  • Ирина [Irina] Владимировна [V.] Женякова [Zhenyakova]
  • Марина [Marina] Федоровна [F.] Черепова [Cherepova]

DOI:

https://doi.org/10.24160/1993-6982-2022-5-145-149

Keywords:

parabolic equation, initial boundary value problems, regular solution, method of potentials, modulus of continuity

Abstract

The method of potentials is one of the classical methods for solving initial boundary value problems for parabolic equations and systems. The method is based on studying the smoothness of parabolic potentials in various functional spaces and studying the solvability of the corresponding integral equations and systems to which the problems are reduced. This method allows one to find a constructive form of solutions to initial-boundary value problems and directly investigate the smoothness of solutions.

This article continues a series of works on constructing the solvability theory of parabolic initial boundary value problems in domains with nonsmooth lateral boundaries in the time variable. The article considers the first and second initial boundary value problems with zero initial condition for a uniformly parabolic equation that is one-dimensional in the spatial variable. It is assumed that the equation coefficients are bounded and uniformly continuous with a modulus of continuity satisfying twice the Dini condition. The specific feature of the study is that the right side of the equation can grow to infinity in a certain way when approaching the initial data assignment line. The solvability (in the classical sense) of these problems is established in a semi-bounded curvilinear domain in a plane with a nonsmooth lateral boundary from the Dini-Hölder class, admitting, in particular, so-called "beaks". The solution is constructed as a sum of the plane parabolic potential and the single layer potential, the kernel of which is the fundamental solution of the equation. The smoothness of the solution of these problems in the Dini-Hölder classes is investigated, and the corresponding correctness estimates are obtained. These estimates characterize the behavior of solutions and their first-order spatial derivative in the closure of the domain. The results obtained can be used to study heat and mass transfer processes.

For the proof, the smoothness in the Dini-Hölder space of a plane parabolic potential with an unlimited density of the Dini class in a curvilinear domain with a nonsmooth lateral boundary is investigated. The obtained result can be used in solving other initial boundary value problems for an inhomogeneous parabolic equation.

Author Biographies

Ирина [Irina] Владимировна [V.] Женякова [Zhenyakova]

Ph.D.-student of Mathematical and Computer Modeling Dept., NRU MPEI, e-mail: Zheniako-vaIV@mpei.ru

Марина [Marina] Федоровна [F.] Черепова [Cherepova]

Dr.Sci. (Phys.-Math.), Professor of Mathematical and Computer Modeling Dept., NRU MPEI, e-mail: Сherepovamf@mpei.ru

References

1. Камынин Л.И. О решении методом потенциалов основных краевых задач для одномерного параболического уравнения второго порядка // Сибирский математический журнал. 1974. Т. 15(4). С. 806—834.
2. Baderko E.A., Cherepova M.F. Dirichlet Problem for Parabolic Systems with Dini Continuous Coefficients // Applicable Analysis. 2021. V. 100(13). Pp. 2900—2910.
3. Зейнеддин М. О потенциале простого слоя для параболической системы в классах Дини: автореф. дис. … канд. физ.-мат. наук. М.: Государственный ун-т им. М.В. Ломоносова, 1992.
4. Черепова М.Ф. Об оценках параболических потенциалов // Вестник МЭИ. 2000. № 6. С. 77—88.
5. Дзядык В.К. Введение в теорию равномерного приближения функций полиномами. М.: Наука, 1977.
6. Бадерко Е.А. О потенциалах для 2p-параболических уравнений // Дифференциальные уравнения. 1983. Т. 19(1). С. 9—18.
7. Бадерко Е.А., Черепова М.Ф. Смешанная задача для параболической системы на плоскости и граничные интегральные уравнения // Современная математика. Фундаментальные направления. 2018. Т. 64(1). С. 20—36.
8. Zhenyakova I.V., Cherepova M.F. Regularity of Solution to the Cauchy Problem for Parabolic Equation in the Dini Space // J. Mathematical Sci. 2021. V. 259(2). Pp. 172—186.
9. Камынин Л.И. О единственности решения первой краевой задачи в неограниченной области для параболического уравнения второго порядка // Журнал вычислительной математики и математической физики. 1984. Т. 24(9). С. 1331—1345.
10. Зейнеддин М. Гладкость потенциала простого слоя для параболической системы второго порядка в классах Дини // Деп. в ВИНИТИ РАН 16.04.1992. № 1294-В92.
11. Камынин Л.И. Теорема с косой производной для равномерно параболического уравнения 2-го порядка // Сибирский математический журнал. 1989. Т. 30(1). С. 114—120
---
Для цитирования: Женякова И.В., Черепова М.Ф. О решении начально-краевых задач для параболического уравнения в классах Дини // Вестник МЭИ. 2022. № 5. С. 145—149. DOI: 10.24160/1993-6982-2022-5-145-149
---
Работа выполнена при поддержке: Министерства науки и высшего образования РФ (проект № FSWF-2020-0022)
#
1. Kamynin L.I. O Reshenii Metodom Potentsialov Osnovnykh Kraevykh Zadach dlya Odnomernogo Parabolicheskogo Uravneniya Vtorogo Poryadka. Sibirskiy Matematicheskiy Zhurnal. 1974;15(4):806—834. (in Russian).
2. Baderko E.A., Cherepova M.F. Dirichlet Problem for Parabolic Systems with Dini Continuous Coefficients. Applicable Analysis. 2021;100(13):2900—2910.
3. Zeyneddin M. O Potentsiale Prostogo Sloya dlya Parabolicheskoy Sistemy v Klassakh Dini: Avtoref. Dis. … Kand. Fiz.-mat. Nauk. M.: Gosudarstvennyy Un-t Im. M.V. Lomonosova, 1992. (in Russian).
4. Cherepova M.F. Ob Otsenkakh Parabolicheskikh Potentsialov. Vestnik MEI. 2000;6:77—88. (in Russian).
5. Dzyadyk V.K. Vvedenie v Teoriyu Ravnomernogo Priblizheniya Funktsiy Polinomami. M.: Nauka, 1977. (in Russian).
6. Baderko E.A. O Potentsialakh dlya 2p-parabolicheskikh Uravneniy. Differentsial'nye Uravneniya. 1983;19(1):9—18. (in Russian).
7. Baderko E.A., Cherepova M.F. Smeshannaya Zadacha dlya Parabolicheskoy Sistemy na Ploskosti i Granichnye Integral'nye Uravneniya. Sovremennaya Matematika. Fundamental'nye Napravleniya. 2018;64(1):20—36. (in Russian).
8. Zhenyakova I.V., Cherepova M.F. Regularity of Solution to the Cauchy Problem for Parabolic Equation in the Dini Space. J. Mathematical Sci. 2021;259(2):172—186.
9. Kamynin L.I. O Edinstvennosti Resheniya Pervoy Kraevoy Zadachi v Neogranichennoy Oblasti dlya Parabolicheskogo Uravneniya Vtorogo Poryadka. Zhurnal Vychislitel'noy Matematiki i Matematicheskoy Fiziki. 1984;24(9):1331—1345. (in Russian).
10. Zeyneddin M. Gladkost' Potentsiala Prostogo Sloya dlya Parabolicheskoy Sistemy Vtorogo Poryadka v Klassakh Dini. Dep. v VINITI RAN 16.04.1992. № 1294-V92. (in Russian).
11. Kamynin L.I. Teorema s Kosoy Proizvodnoy dlya Ravnomerno Parabolicheskogo Uravneniya 2-go Poryadka. Sibirskiy Matematicheskiy Zhurnal. 1989;30(1):114—120. (in Russian)
---
The work is executed at support: Ministry of Science and Higher Education of the Russian Federation (Project No. FSWF-2020-0022)
For citation: Zhenyakova I.V., Cherepova M.F. On Solving Initial Boundary Value Problems for a Parabolic Equation in Dini Classes. Bulletin of MPEI. 2022;5:145—149. (in Russian). DOI: 10.24160/1993-6982-2022-5-145-149

Published

2022-04-01

Issue

Section

Differential Equations, Dynamical Systems and Optimal Control (1.1.2)