Estimation of Overhead Power Line Support Vibration Frequency
DOI:
https://doi.org/10.24160/1993-6982-2022-5-150-156Keywords:
power line support, number of panels, lower frequency estimate, truss spatial model, Dunkerley's methodAbstract
The aim of the study is to obtain formulas for assessing the overhead power line support truss spatial model fundamental vibration frequency. A spatial statically determinate model of the structure is proposed. To calculate the truss stiffness matrix, the forces in the bars are determined by cutting out nodes in a program compiled in the Maple symbolic mathematics environment. The system of equilibrium equations in projections on the coordinate axes has a matrix form. The stiffness matrix coefficients are calculated using the Maxwell–Mohr formula. The hinges are taken to be ideal, and the truss weight is uniformly distributed over the truss nodes. Horizontal vibrations of the masses are considered. To estimate the natural vibration fundamental frequency, the Dunkerley method was used, which reduces the problem with many degrees of freedom to the calculation of partial frequencies. The coefficients in the solution formula are determined using the induction method by generalizing a number of formulas for trusses with a sequentially increasing number of panels along the height of supports. The general terms of the sequences of coefficients satisfy linear homogeneous recurrent equations of no higher than eleventh degree. The solutions of the equations give the final formula for the dependence of the lowest natural vibration frequency of the support truss with the mass distributed over the nodes on the number of panels. A comparison of the analytical solution with the numerical one has shown that the error of the obtained estimate does not exceed 6%. The results can be used in engineering calculations of power line supports.
References
2. Рыбаков Л.С., Мишустин И.В. Собственные колебания плоских регулярных упругих ферм ортогональной структуры // Механика композиционных материалов и конструкций. 1999. Т. 5. № 2. С. 3—16.
3. Vorob'ev O. Bilateral Analytical Estimation of First Frequency of a Plane Truss // Construction of Unique Buildings and Structures. 2020. V. 92. No. 9204.
4. Воробьев О.В. О методах получения аналитического решения для проблемы собственных частот шарнирных конструкций // Строительная механика и конструкции. 2020. № 1(24). С. 25—38.
5. Petrenko V. The natural Frequency of a Two-span Truss // Alfa Build. 2021. V. 20. No. 2001.
6. Петренко В.Ф. Оценка собственной частоты двухпролётной фермы с учетом жесткости опор // Строительная механика и конструкции. 2021. № 4(31). С. 16—25.
7. Кирсанов М.Н., Воробьев О.В. Аналитические оценки деформаций и собственных частот опор линий электропередач // Вестник МЭИ. 2021. № 4. С. 122—128.
8. Kirsanov M., Khromatov V. Deformation of the Transmission Towers: Analytical Solution // Construction of Unique Buildings and Structures. 2021. V. 96. No. 9602.
9. Kirsanov M.N., Vorobyev O.V. The Analysis of Dependence of the Vibration Frequency of a Space Cantilever Truss on the Number of Panels // Вестник МГСУ. 2021. Т. 16. Вып. 5. С. 570—576.
10. Hutchinson R.G., Fleck N.A. The Structural Performance of the Periodic Truss // J. Mechanics and Physics of Solids. 2006. Vol. 54. No. 4. Pp. 756—782
---
Для цитирования: Кирсанов М.Н. Оценка частоты колебаний опоры линии электропередач // Вестник МЭИ. 2022. № 5. С. 150—156. DOI: 10.24160/1993-6982-2022-5-150-156
---
Работа выполнена при поддержке: Российского научного фонда (проект № 22-21-00473)
#
1. Tanasoglo A. V. Utochnenie Koeffitsienta Dinamichnosti Ankerno-uglovoy Opory VL 110 kV pri Deystvii Pul'satsionnoy Sostavlyayushchey Vetrovoy Nagruzki. Metallicheskie Konstruktsii. 2012;18;2:135—145. (in Russian).
2. Rybakov L.S., Mishustin I.V. Sobstvennye Kolebaniya Ploskikh Regulyarnykh Uprugikh Ferm Ortogonal'noy Struktury. Mekhanika Kompozitsionnykh Materialov i Konstruktsiy. 1999;5;2:3—16. (in Russian).
3. Vorob'ev O. Bilateral Analytical Estimation of First Frequency of a Plane Truss. Construction of Unique Buildings and Structures. 2020;92;9204.
4. Vorob'ev O.V. O Metodakh Polucheniya Analiticheskogo Resheniya dlya Problemy Sobstvennykh Chastot Sharnirnykh Konstruktsiy. Stroitel'naya Mekhanika i Konstruktsii. 2020;1(24):25—38. (in Russian).
5. Petrenko V. The Natural Frequency of a Two-span Truss. Alfa Build. 2021;20:2001.
6. Petrenko V.F. Otsenka Sobstvennoy Chastoty Dvukhproletnoy Fermy s Uchetom Zhestkosti Opor. Stroitel'naya Mekhanika i Konstruktsii. 2021;4(31):16—25. (in Russian).
7. Kirsanov M.N., Vorob'ev O.V. Analiticheskie Otsenki Deformatsiy i Sobstvennykh Chastot Opor Liniy Elektroperedach. Vestnik MEI. 2021;4:122—128. (in Russian).
8. Kirsanov M., Khromatov V. Deformation of the Transmission Towers: Analytical Solution. Construction of Unique Buildings and Structures. 2021;96:9602.
9. Kirsanov M.N., Vorobyev O.V. The Analysis of Dependence of the Vibration Frequency of a Space Cantilever Truss on the Number of Panels. Vestnik MGSU. 2021;16:5:570—576.
10. Hutchinson R.G., Fleck N.A. The Structural Performance of the Periodic Truss. J. Mechanics and Physics of Solids. 2006;54;4:756—782
---
For citation: Kirsanov M.N. Estimation of Overhead Power Line Support Vibration Frequency. Bulletin of MPEI. 2022;5:150—156. (in Russian). DOI: 10.24160/1993-6982-2022-5-150-156
---
The work is executed at support: Russian Science Foundation (Project No. 22-21-00473)

