Numerical Simulation and Experimental Investigation of the Grade R6M5 High-Speed Steel Induction Thermochemical Treatment

Authors

  • Павел [Pavel] Алексеевич [A.] Палканов [Palkanov]
  • Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]
  • Александр [Aleksandr] Александрович [A.] Фомин [Fomin]

DOI:

https://doi.org/10.24160/1993-6982-2022-6-76-85

Keywords:

high-speed tool steel, induction heating, nitriding, nitrogen diffusion, heat distribution, numerical simulation, heating curves

Abstract

The results from numerically simulating the induction thermochemical treatment of disk samples made of grade R6M5 high-speed tool steel are presented. The model takes into account the location of the products processed and their heating kinetics inside a sealed chamber in a nitrogen-containing medium. The determination of temperature fields corresponding to nitrogen diffusion processes in steel products (at temperatures above 600 °C) made it possible to determine the product heating depth and uniformity, and the diffusion layer depth. In the course of simulation, the influence of the inductor current in the range of 3.3–3.7 kA on the sample surface temperature during 10 min of treatment was established. The numerical simulation process involved solution of the electrodynamics and unsteady heat transfer boundary problem in the inductor–chamber–sample system. The influence of the inductor current on the steel product average temperature was revealed. It has been found that with these current values, the sample surface temperature varies in the range from 900 to 1170°C. Uniform heating for the entire metal product cross-section depth is observed. The study of the nitrogen content in the substrate after treatment has shown that the nitrogen content was 4.9–12.0 at % in the surface layers (up to 50–70 µm) and up to 2.6–4.0 at % in the diffusion layers (from 80 to 150 µm). A nonuniform nitrogen distribution over the product cross-section was obtained. The microhardness data equal to 1928–1950 HV (at a load of 1.98 H) have confirmed the formation of solid nitrides in the surface layer of samples.

Author Biographies

Павел [Pavel] Алексеевич [A.] Палканов [Palkanov]

Research engineer of the Electrophysical Processes and Technology Laboratory, Ph.D.-student of the Electric Power and Electrical Engineering Dept., Yuri Gagarin State Technical University of Saratov, e-mail: maikmozovskii@mail.ru

Владимир [Vladimir] Александрович [A.] Кошуро [Koshuro]

Ph.D. (Techn.), Assistant Professor of Materials Science and Biomedical Engineering Dept., Yuri Gagarin State Technical University of Saratov, e-mail: dimirion@mail.ru

Александр [Aleksandr] Александрович [A.] Фомин [Fomin]

Dr.Sci. (Techn.), Assistant Professor, Vice-Rector for Strategic Development, Head of Materials Science and Biomedical Engineering Dept., Yuri Gagarin State Technical University of Saratov, e-mail: afominalex@gmail.com

References

1. Fomin A.A. e. a. Microstructure and Hardness of Carbon and Tool Steel Quenched with Gigh-frequency Currents // Proc. SPIE. 2018. V. 10716. P. 107161.
2. Takesue S. e. a. Rapid Nitriding Mechanism of Titanium Alloy by Gas Blow Induction Heating // Surface & Coatings Technol. 2020. V. 399. P. 126160.
3. Peter S. Laser Nitriding of Metals // Progress in Materials Sci. 2002. V. 47. Pp. 1—161.
4. Xi Y., Liu D., Dong H. Improvement of Corrosion and Wear Resistances of AISI 420 Martensitic Stainless Steel Using Plasma Nitriding at Low Temperature // Surface & Coatings Technol. 2008. V. 202. Pp. 2577—2583.
5. Lanzutti A. e. a. Microstructural and Mechanical Study of an Induction Nitrided Ti gr.5 Hip Prosthesis Component // Surface and Coatings Technol. 2019. V. 377. P. 124895.
6. Ohtsu N. e. a. Investigation of Admixed Gas Effect on Plasma Nitriding of AISI316L Austenitic Stainless Steel // Vacuum. 2021. V. 193. P. 110545.
7. Слухоцкий А.Е., Рыскин С.Е. Индукторы для индукционного нагрева машиностроительных деталей. М.-Л.: Энергия, 1974.
8. Алиферов А.И., Лупи С. Индукционный и электроконтактный нагрев металлов. Новосибирск: Изд-во НГТУ, 2011.
9. Иванцивский В.В. Численное моделирование температурных полей в материалах при упрочнении с использованием концентрированных объемных источников нагрева // Научный вестник Новосибирского гос. техн. ун-та. 2004. № 2. С. 161—172.
10. Fomin A. e. a. Functionally Graded Ti (C,N) Coatings and Their Production on Titanium Using Solid-state Carburization Associated with Induction Heat Treatment // Composite Structures. 2020. V. 245. P. 112393.
11. Palkanov P., Fomin A. Influence of Induction Chemical Thermal Treatment in a Gaseous Medium on the Formation of a Wear-resistant Gradient Nitride Layer on Tool Steel // Proc. SPIE. 2020. V. 11845. P. 118451.
12. Takesue S. e. a. Characterization of Surface Layer Formed by Gas Blow Induction Heating Nitriding at Different Temperatures and Its Effect on the Fatigue Properties of Titanium Alloy // Results in Materials. 2020. V. 5. P. 100071.
13. Takesue S. e. a. Effect of Pre-treatment with Fine Particle Peening on Surface Properties and Wear Resistance of Gas Blow Induction Heating Nitrided Titanium Alloy // Surface & Coatings Technol. 2019. V. 359. Pp. 476—484.
14. Voyko A. e. a. Application of the Technology of Induction Chemical-thermal Treatment to Improve the Physical and Mechanical Properties of Tantalum // J. Phys.: Conf. Series. 2021. V. 2086. P. 012215.
15. Shchelkunov A., Egorov I., Fomin A. Study of the Hardness Distribution after Induction Heat Treatment of Titanium Over the Surface and the Cross-section // Ibid. P. 012208.
16. Ржевская С.В. Материаловедение. М.: Логос, 2004.
17. Лахтин Ю.М., Коган Я.Д. Азотирование стали. М.: Машиностроение, 1976.
18. Сидоренко В.Д. Применение индукционного нагрева в машиностроении. Л.: Машиностроение, 1980.
19. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989.
20. Fomin A. e. a. Simulation and Experimental Study of Induction Heat Treatment of Titanium Disks // Intern. J. Heat and Mass Transfer. 2021. V. 165. P. 120668.
21. Палканов П.А., Кошуро В.А., Фомин А.А. Влияние тока индуктора при азотировании стали Р6М5 на структуру и микротвердость диффузионного слоя // Вопросы электротехнологии. 2021. № 2. С. 5—13.
22. Palkanov P., Koshuro V., Fomin A. Improving the Mechanical Properties of Tool Steel by Induction Chemical-thermal Treatment // J. Phys.: Conf. Series. 2021. V. 2086. P. 012200.
---
Для цитирования: Палканов П.А., Кошуро В.А., Фомин А.А. Численное моделирование и экспериментальное исследование процесса индукционной химико-термической обработки быстрорежущей стали Р6М5 // Вестник МЭИ. 2022. № 6. С. 76—85. DOI: 10.24160/1993-6982-2022-6-76-85
---
Работа выполнена при поддержке: гранта Президента Российской Федерации для молодых докторов наук № МД-965.2021.4. Микроструктура шлифов изучена в рамках плана исследований по программе «У.М.Н.И.К.» (договор № 16667ГУ/2021)
#
1. Fomin A.A. e. a. Microstructure and Hardness of Carbon and Tool Steel Quenched with Gigh-frequency Currents. Proc. SPIE. 2018;10716:107161.
2. Takesue S. e. a. Rapid Nitriding Mechanism of Titanium Alloy by Gas Blow Induction Heating. Surface & Coatings Technol. 2020;399:126160.
3. Peter S. Laser Nitriding of Metals. Progress in Materials Sci. 2002;47:1—161.
4. Xi Y., Liu D., Dong H. Improvement of Corrosion and Wear Resistances of AISI 420 Martensitic Stainless Steel Using Plasma Nitriding at Low Temperature. Surface & Coatings Technol. 2008;202:2577—2583.
5. Lanzutti A. e. a. Microstructural and Mechanical Study of an Induction Nitrided Ti gr.5 Hip Prosthesis Component // Surface and Coatings Technol. 2019;377:124895.
6. Ohtsu N. e. a. Investigation of Admixed Gas Effect on Plasma Nitriding of AISI316L Austenitic Stainless Steel. Vacuum. 2021;193:110545.
7. Slukhotskiy A.E., Ryskin S.E. Induktory dlya Induktsionnogo Nagreva Mashinostroitel'nykh Detaley. M.-L.: Energiya, 1974. (in Russian).
8. Aliferov A.I., Lupi S. Induktsionnyy i Elektrokontaktnyy Nagrev Metallov. Novosibirsk: Izd-vo NGTU, 2011. (in Russian).
9. Ivantsivskiy V.V. Chislennoe Modelirovanie Temperaturnykh Poley v Materialakh pri Uprochnenii s Ispol'zovaniem Kontsentrirovannykh Ob'emnykh Istochnikov Nagreva. Nauchnyy Vestnik Novosibirskogo Gos. Tekhn. Un-ta. 2004;2:161—172. (in Russian).
10. Fomin A. e. a. Functionally Graded Ti (C,N) Coatings and Their Production on Titanium Using Solid-state Carburization Associated with Induction Heat Treatment. Composite Structures. 2020;245:112393.
11. Palkanov P., Fomin A. Influence of Induction Chemical Thermal Treatment in a Gaseous Medium on the Formation of a Wear-resistant Gradient Nitride Layer on Tool Steel. Proc. SPIE. 2020;11845:118451.
12. Takesue S. e. a. Characterization of Surface Layer Formed by Gas Blow Induction Heating Nitriding at Different Temperatures and Its Effect on the Fatigue Properties of Titanium Alloy. Results in Materials. 2020;5:100071.
13. Takesue S. e. a. Effect of Pre-treatment with Fine Particle Peening on Surface Properties and Wear Resistance of Gas Blow Induction Heating Nitrided Titanium Alloy. Surface & Coatings Technol. 2019;359:476—484.
14. Voyko A. e. a. Application of the Technology of Induction Chemical-thermal Treatment to Improve the Physical and Mechanical Properties of Tantalum. J. Phys.: Conf. Series. 2021;2086:012215.
15. Shchelkunov A., Egorov I., Fomin A. Study of the Hardness Distribution after Induction Heat Treatment of Titanium Over the Surface and the Cross-section. Ibid:012208.
16. Rzhevskaya S.V. Materialovedenie. M.: Logos, 2004. (in Russian).
17. Lakhtin Yu.M., Kogan Ya.D. Azotirovanie Stali. M.: Mashinostroenie, 1976. (in Russian)
18. Sidorenko V.D. Primenenie Induktsionnogo Nagreva v Mashinostroenii. L.: Mashinostroenie, 1980. (in Russian).
19. Zinov'ev V.E. Teplofizicheskie Svoystva Metallov pri Vysokikh Temperaturakh. M.: Metallurgiya, 1989. (in Russian).
20. Fomin A. e. a. Simulation and Experimental Study of Induction Heat Treatment of Titanium Disks. Intern. J. Heat and Mass Transfer. 2021;165:120668.
21. Palkanov P.A., Koshuro V.A., Fomin A.A. Vliyanie Toka Induktora pri Azotirovanii Stali R6M5 na Strukturu i Mikrotverdost' Diffuzionnogo Sloya. Voprosy Elektrotekhnologii. 2021;2:5—13. (in Russian).
22. Palkanov P., Koshuro V., Fomin A. Improving the Mechanical Properties of Tool Steel by Induction Chemical-thermal Treatment. J. Phys.: Conf. Series. 2021;2086:012200.
---
For citation: Palkanov P.A., Koshuro V.A., Fomin A.A. Numerical Simulation and Experimental Investigation of the Grade R6M5 High-Speed Steel Induction Thermochemical Treatment. Bulletin of MPEI. 2022;6:76—85. (in Russian). DOI: 10.24160/1993-6982-2022-6-76-85
---
The work is executed at support: Grant of the President of the Russian Federation for Young Doctors of Sciences No. МД-965.2021.4. The Microstructure of the Grinds was Studied within the Framework of the Research Plan Under the program «U.M.N.I.K.» (Contract No.16667ГУ/2021)

Published

2022-04-13

Issue

Section

Electrotechnology and Electrophysics (Technical Sciences) (2.4.4)