The Influence of Some Factors on the Water Electrical Conductivity Variation Rate in the Low-Frequency Contact Sensors of Conductometers

Authors

  • Ольга [Olga] Вадимовна [V.] Егошина [Yegoshina]
  • Наталия [Nataliya] Алексеевна [A.] Большакова [Bolshakova]
  • Софья [Sofiya] Константиновна [K.] Лукутина Звонарева[Lukutina Zvonareva]

DOI:

https://doi.org/10.24160/1993-6982-2022-6-96-103

Keywords:

thermal power plants, cycle chemistry monitoring system of water and steam quality, automatic chemical control analyzer, conductometric sensor

Abstract

The aim of the work is to study ways to improve the accuracy of water and steam condensate electrical conductivity measurements by evaluating the effect the parameters of the medium analyzed have on the time constant of the conductometer low-frequency contact sensors. Conductometers are currently among the most widely used and reliable instruments applied in cycle chemistry monitoring systems. The electrical conductivity of process media at thermal and nuclear power plants is measured predominantly with the use of contact low-frequency sensors of conductometers. In this regard, a study of the influence of individual factors on the accuracy of electrical conductivity measurements is a topical and demanded issue.

The article presents the results obtained from a study of the effect the sample temperature, flow rate and ionic composition have on the electrical conductivity variation rate in dosing ammonia used for main condensate and feed water correction treatment. A comparative analysis of the obtained dependences of the electrical conductivity time constant on the studied perturbations as applied to low-frequency conductometers of various manufacturers is performed. The experiment conducting procedure and the technical characteristics of the instruments used for electrical conductivity measurements are given.

As a result of the accomplished study, the factors affecting the time constant of low-frequency flow conductometers of various manufacturers have been substantiated by experiment, and the accuracy of the obtained measured electrical conductivity values for various sample parameters has been given. The study of the effect the sample qualitative composition has on the conductometer sensor time constant has shown a high variation rate of electrical conductivity values at an ammonia concentration in the medium analyzed up to 300 µg/dm3 followed by a gradual decrease in the conductivity variation rate in the interval up to 1000 µg/dm3. It is shown that the combined dosing of ammonium ions and bicarbonates leads to an increase in the time constant value in comparison with the case of dosing only an aqueous solution of ammonia. Optimal sample parameters (temperature and flow rate) are recommended to obtain more reliable measurements of the process water electrical conductivity at thermal and nuclear power plants.

Author Biographies

Ольга [Olga] Вадимовна [V.] Егошина [Yegoshina]

Ph.D. (Techn.), Assistant Professor of Theoretical Bases of Heat Engineering Dept. Named after M.P. Vukalovich, NRU MPEI, e-mail: yegoshinaov@mpei.ru

Наталия [Nataliya] Алексеевна [A.] Большакова [Bolshakova]

Ph.D. (Techn.), Senior Lecturer of Theoretical Bases of Heat Engineering Dept. Named after M.P. Vukalovich, NRU MPEI, e-mail: bolshakovana@mpei.ru

Софья [Sofiya] Константиновна [K.] Лукутина Звонарева[Lukutina Zvonareva]

Assistant, Ph.D.-student of Theoretical Bases of Heat Engineering Dept. Named after M.P. Vukalovich, NRU MPEI, e-mail: zvonarevask@mpei.ru

References

1. Ваня Я. Анализаторы газов и жидкостей. М.: Энергия, 1970.
2. Воронов В.Н., Петрова Т.И., Назаренко П.Н. Математические модели и их использование в системах химико-технологического мониторинга электростанций // Теплоэнергетика. 2005. № 4. С. 51—53.
3. Егошина О.В., Макарищева Н.А., Айе Мин Лат. Оценка влияния типовых нарушений водных режимов на работу автоматических анализаторов химконтроля // Энергосбережение и водоподготовка. 2015. № 4(96). С. 69—73.
4. Живилова Л.М., Слободская Ю.А. Автоматические анализаторы показателей качества ВХР пароводяного тракта и сточных вод ТЭС // Новое в Российской электроэнергетике. 2008. № 8. С. 34—48.
5. Ларин А.Б., Сорокина А.Я. Развитие автоматического химконтроля на ТЭС на основе измерений электропроводности и рН // Теоретические и практические вопросы применения приборов контроля ВХР в энергетике: Тезисы докл. IV науч.-практич. конф. Н. Новгород: ООО «ВЗОР», 2017. С. 18—24.
6. Егошина О.В., Воронов В.Н., Большакова Н.А., Тет Вей Лин. Исследование динамических свойств автоматических анализаторов в системах химического контроля на тепловых электростанциях // Новое в Российской электроэнергетике. 2019. № 3. С. 25—32.
7. Воронов В.Н. и др. Опыт разработки систем мониторинга водно-химического режима ТЭС и АЭС // Теплоэнергетика. 1994. № 1. С. 46—50.
8. Латышенко К.П. Технические измерения и приборы. Т. 2. Кн. 1. М: Юрайт, 2019.
9. РД 153-34.1-37.532.4—2001. Общие технические требования к системам химико-технологического мониторинга водно-химических режимов тепловых электростанций.
10. Voronov V.N., Yegoshina O.V., Bolshakova N.A., Yarovoi V.O., Aie Min Latt. Effect of Water Chemistry Upsets on the Dynamics of Corrective Reagent Dosing Systems at Thermal Power Stations // Thermal Eng. 2016. V. 63. No. 12. Pp. 903—907.
---
Для цитирования: Егошина О.В., Большакова Н.А., Лукутина (Звонарева) С.К. Влияние некоторых факторов на скорость изменения удельной электропроводности воды в низкочастотных контактных датчиках кондуктометров // Вестник МЭИ. 2022. № 6. С. 96—103. DOI: 10.24160/1993-6982-2022-6-96-103
---
Работа выполнена при поддержке: Российского научного фонда (проект № 22-29-20314)
#
1. Vanya Ya. Analizatory Gazov i Zhidkostey. M.: Energiya, 1970. (in Russian).
2. Voronov V.N., Petrova T.I., Nazarenko P.N. Matematicheskie Modeli i Ikh Ispol'zovanie v Sistemakh Khimiko-tekhnologicheskogo Monitoringa Elektrostantsiy. Teploenergetika. 2005;4:51—53. (in Russian).
3. Egoshina O.V., Makarishcheva N.A., Aye Min Lat. Otsenka Vliyaniya Tipovykh Narusheniy Vodnykh Rezhimov na Rabotu Avtomaticheskikh Analizatorov Khimkontrolya. Energosberezhenie i Vodopodgotovka. 2015;4(96):69—73. (in Russian).
4. Zhivilova L.M., Slobodskaya Yu.A. Avtomaticheskie Analizatory Pokazateley Kachestva VKHR Parovodyanogo Trakta i Stochnykh Vod TES. Novoe v Rossiyskoy Elektroenergetike. 2008;8:34—48. (in Russian).
5. Larin A.B., Sorokina A.Ya. Razvitie Avtomaticheskogo Khimkontrolya na TES na Osnove Izmereniy Elektroprovodnosti i рН. Teoreticheskie i Prakticheskie Voprosy Primeneniya Priborov Kontrolya VKHR v Energetike: Tezisy Dokl. IV Nauch.-praktich. Konf. N. Novgorod: OOO «VZOR», 2017:18—24. (in Russian).
6. Egoshina O.V., Voronov V.N., Bol'shakova N.A., Tet Vey Lin. Issledovanie Dinamicheskikh Svoystv Avtomaticheskikh Analizatorov v Sistemakh Khimicheskogo Kontrolya na Teplovykh Elektrostantsiyakh. Novoe v Rossiyskoy Elektroenergetike. 2019;3:25—32. (in Russian).
7. Voronov V.N. i dr. Opyt Razrabotki Sistem Monitoringa Vodno-khimicheskogo Rezhima TES i AES. Teploenergetika. 1994;1:46—50. (in Russian).
8. Latyshenko K.P. Tekhnicheskie Izmereniya i Pribory. T. 2. Kn. 1. M: Yurayt, 2019. (in Russian).
9. RD 153-34.1-37.532.4—2001. Obshchie Tekhnicheskie Trebovaniya k Sistemam Khimiko-tekhnologicheskogo Monitoringa Vodno-khimicheskikh Rezhimov Teplovykh Elektrostantsiy. (in Russian).
10. Voronov V.N., Yegoshina O.V., Bolshakova N.A., Yarovoi V.O., Aie Min Latt. Effect of Water Chemistry Upsets on the Dynamics of Corrective Reagent Dosing Systems at Thermal Power Stations. Thermal Eng. 2016;63;12:903—907.
---
For citation: Yegoshina O.V., Bolshakova N.A., Lukutina (Zvonareva) S.K. The Influence of Some Factors on the Water Electrical Conductivity Variation Rate in the Low-Frequency Contact Sensors of Conductometers. Bulletin of MPEI. 2022;6:96—103. (in Russian). DOI: 10.24160/1993-6982-2022-6-96-103
---
The work is executed at support: Russian Science Foundation (Project No. 22-29-20314)

Published

2022-06-28

Issue

Section

Energy Systems and Complexes (2.4.5)