Reducing Flow Friction by Laser Texturing of an Ordered Relief on a Cylindrical Surface

Authors

  • Сергей [Sergey] Владимирович [V.] Григорьев [Grigoriev]
  • Артем [Artem] Вячеславович [V.] Рыженков [Ryzhenkov]
  • Александр [Aleksandr] Викторович [V.] Волков [Volkov]
  • Марат [Marat] Равилевич [R.] Дасаев [Dasaev]
  • Евгений [Evgeniy] Сергеевич [S.] Трушин [Trushin]
  • Алена [Alena] Юрьевна [Yu.] Лихаева [Likhaeva]

DOI:

https://doi.org/10.24160/1993-6982-2022-6-110-116

Keywords:

hydrophobicity, laser ablation, copper surface, textured relief, flow friction

Abstract

Today, a growing interest in controlling the wettability of functional surfaces is observed. Hydrophobization of functional surfaces helps reduce flow friction, which, in turn, improves the efficiency of the installation by reducing the energy consumption by the pump drive. The article describes the process of achieving nonwetting properties of the copper cylindrical surface of experimental samples by laser texturing of the relief and subsequent formation of surfactant molecular layers. An experimental bench for conducting studies on determining the effect the modification of functional surfaces have on their flow friction properties has been constructed, and a methodology for conducting studies has been developed. It has been determined that the use of an experimental sample with a structured relief and subsequent processing of surfactants in the experimental bench showed the maximum decrease in flow friction, which amounted to 32–36%.

Author Biographies

Сергей [Sergey] Владимирович [V.] Григорьев [Grigoriev]

Ph.D. (Techn.), Leading Researcher of Scientific Center «Wear Resistance», NRU MPEI

Артем [Artem] Вячеславович [V.] Рыженков [Ryzhenkov]

Dr.Sci. (Techn.), Director, Scientific Center «Wear Resistance», NRU MPEI, e-mail: ryzhenkovav@mpei.ru

Александр [Aleksandr] Викторович [V.] Волков [Volkov]

Dr.Sci. (Techn.), Head of Hydromechanics and Hydraulic Machines Dept., NRU MPEI

Марат [Marat] Равилевич [R.] Дасаев [Dasaev]

Ph.D. (Techn.),  Junior Research Assistant of Scientific Center «Wear Resistance», NRU MPEI

Евгений [Evgeniy] Сергеевич [S.] Трушин [Trushin]

Ph.D.-student of Hydromechanics and Hydraulic Machines Dept., Engineer of Scientific Center «Wear Resistance», NRU MPEI, e-mail: TruchinYS@mpei.ru

Алена [Alena] Юрьевна [Yu.] Лихаева [Likhaeva]

Ph.D.-student of Industrial Heat Power Engineering Systems Dept., Engineer of the 1st Category of Scientific Center «Wear Resistance», NRU MPEI, e-mail: likhayevaay@mpei.ru

References

1. Liravi M., Pakzad H., Moosavi A., Nouri-Borujerdi A. A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction // Progress in Organic Coatings. 2020. V. 140. P. 105537.
2. Li S., Liu Y., Tian Z., Liu X., Han Z., Ren L. Biomimetic Superhydrophobic and Antibacterial Stainless-steel Mesh Via Double-potentiostatic Electrodeposition and Modification // Surface and Coatings Technol. 2020. V. 403. P. 126355.
3. Samanta A., Wang Q., Shaw S.K., Ding H. Roles of Chemistry Modification for Laser Textured Metal Alloys to Achieve Extreme Surface Wetting Behaviors // Materials and Design. 2020. V. 192(15). P. 108744.
4. Tudu B.K., Kumar A., Bhushan B. Facile Approach to Develop Anti-corrosive Superhydrophobic Aluminium with High Mechanical, Chemical and Thermal Durability // Philosoph. Trans. of the Royal Soc. a Math., Phys. and Eng. Sci. 2018. V. 377(2138). P. 20180272.
5. Rajappan A. e. a. Influence of Textural Statistics on Drag Reduction by Scalable, Randomly Rough Superhydrophobic Surfaces in Turbulent Flow // Phys. Fluids. 2019. V. 31. P. 042107.
6. Kotenko M., Oskarsson H., Bojesen C., Nielsen M.P. An Experimental Study of the Drag Reducing Surfactant for District Heating and Cooling // Energy. 2019. V. 178. Pp. 72—78.
7. Haibao H., Peng D., Feng Z., Dong S., Yang W. Effect of Hydrophobicity on Turbulent Boundary Layer Under Water // Experimental Thermal and Fluid Sci. 2015. V. 60. Pp. 148—156.
8. Гортышов Ю.Ф., Повов И.А., Зубков Н.Н., Каськов С.И., Щелчков А.В. Кипение воды на микроструктурированных поверхностях // Труды Академэнерго. 2012. № 1. С. 14—31.
9. Shaeri M.R., Attinger D., Bonner R.W. Vapor Chambers with Hydrophobic and Biphilic Evaporators in Moderate to High Heat Flux Applications // Appl. Thermal Eng. 2018. V. 130. Pp. 83— 92.
10. Кузма-Кичта Ю.А. и др. Исследование интенсификации теплообмена при кипении воды на поверхности с микро и нанорельефом // Теплоэнергетика. 2014. № 3. С. 35—38.
11. Li L. e. a. Study of Adhesion and Friction Drag on a Rough Hydrophobic Surface: Sandblasted Aluminum // Phys. Fluids. 2018. V. 30. P. 071903.
12. Ryzhenkov A.V. e. a. The Influence of Laser Impact on Wettability of Brass Surface // SSRG Intern. J. Eng. Trends and Technol. 2020. V. 68. Pp. 25—32.
13. Ryzhenkov A.V., Grigoriev S.V., Dasaev M.R., Trushin E.S., Tyabut E.M. The Influence of Relief Texturing by Laser Ablation on Wettability of Brass Surface // Eurasian J. Biosci. 2020. V. 14. Pp. 6197—6205.
14. Lukin M.V., Ryzhenkov A.V., Kurshakov A.V., Ryzhenkov O.V. Karpunin A.P. The Results of the Implementation of SAS Technology for the Renovation and Life Extension of District Heating Systems // Proc. V Intern. Conf. Energy and Sustainability. 2014. V. 186. Pp. 701—709.
15. Пат. № 2439204 РФ. Способ защиты поверхностей гидравлических систем от коррозии и накопления отложений / В.А. Рыженков, А.В. Куршаков, И.П. Анахов, О.В. Калакуцкая. Бюл. изобрет. 2012. № 1.
---
Для цитирования: Григорьев С.В., Рыженков А.В., Волков А.В., Дасаев М.Р., Трушин Е.С., Лихаева А.Ю. Снижение гидравлического сопротивления за счет лазерного текстурирования упорядоченного рельефа на цилиндрической поверхности // Вестник МЭИ. 2022. № 6. С. 110—116. DOI: 10.24160/1993-6982-2022-6-110-116
---
Работа выполнена: в рамках проекта «Повышение эффективности установок на низкокипящих рабочих веществах на основе использования бифильных поверхностей теплообмена» при поддержке гранта НИУ «МЭИ» на реализацию программ научных исследований «Энергетика», «Электроника, радиотехника и IT» и «Технологии индустрии 4.0 для промышленности и робототехника» в 2020—2022 гг
#
1. Liravi M., Pakzad H., Moosavi A., Nouri-Borujerdi A. A Comprehensive Review on Recent Advances in Superhydrophobic Surfaces and Their Applications for Drag Reduction. Progress in Organic Coatings. 2020;140:105537.
2. Li S., Liu Y., Tian Z., Liu X., Han Z., Ren L. Biomimetic Superhydrophobic and Antibacterial Stainless-steel Mesh Via Double-potentiostatic Electrodeposition and Modification. Surface and Coatings Technol. 2020;403:126355.
3. Samanta A., Wang Q., Shaw S.K., Ding H. Roles of Chemistry Modification for Laser Textured Metal Alloys to Achieve Extreme Surface Wetting Behaviors. Materials and Design. 2020;192(15):108744.
4. Tudu B.K., Kumar A., Bhushan B. Facile Approach to Develop Anti-corrosive Superhydrophobic Aluminium with High Mechanical, Chemical and Thermal Durability. Philosoph. Trans. of the Royal Soc. a Math., Phys. and Eng. Sci. 2018;377(2138):20180272.
5. Rajappan A. e. a. Influence of Textural Statistics on Drag Reduction by Scalable, Randomly Rough Superhydrophobic Surfaces in Turbulent Flow. Phys. Fluids. 2019;31:042107.
6. Kotenko M., Oskarsson H., Bojesen C., Nielsen M.P. An Experimental Study of the Drag Reducing Surfactant for District Heating and Cooling. Energy. 2019;178:72—78.
7. Haibao H., Peng D., Feng Z., Dong S., Yang W. Effect of Hydrophobicity on Turbulent Boundary Layer Under Water. Experimental Thermal and Fluid Sci. 2015;60:148—156.
8. Gortyshov Yu.F., Povov I.A., Zubkov N.N., Kas'kov S.I., Shchelchkov A.V. Kipenie Vody na Mikrostrukturirovannykh Poverkhnostyakh. Trudy Akademenergo. 2012;1:14—31. (in Russian).
9. Shaeri M.R., Attinger D., Bonner R.W. Vapor Chambers with Hydrophobic and Biphilic Evaporators in Moderate to High Heat Flux Applications. Appl. Thermal Eng. 2018;130:83— 92.
10. Kuzma-Kichta Yu.A. i dr. Issledovanie Intensifikatsii Teploobmena pri Kipenii Vody na Poverkhnosti s Mikro i Nanorel'efom. Teploenergetika. 2014;3:35—38. (in Russian).
11. Li L. e. a. Study of Adhesion and Friction Drag on a Rough Hydrophobic Surface: Sandblasted Aluminum. Phys. Fluids. 2018;30:071903.
12. Ryzhenkov A.V. e. a. The Influence of Laser Impact on Wettability of Brass Surface. SSRG Intern. J. Eng. Trends and Technol. 2020;68:25—32.
13. Ryzhenkov A.V., Grigoriev S.V., Dasaev M.R., Trushin E.S., Tyabut E.M. The Influence of Relief Texturing by Laser Ablation on Wettability of Brass Surface. Eurasian J. Biosci. 2020;14:6197—6205.
14. Lukin M.V., Ryzhenkov A.V., Kurshakov A.V., Ryzhenkov O.V. Karpunin A.P. The Results of the Implementation of SAS Technology for the Renovation and Life Extension of District Heating Systems. Proc. V Intern. Conf. Energy and Sustainability. 2014;186:701—709.
15. Pat. № 2439204 RF. Sposob Zashchity Poverkhnostey Gidravlicheskikh Sistem ot Korrozii i Nakopleniya Otlozheniy. V.A. Ryzhenkov, A.V. Kurshakov, I.P. Anakhov, O.V. Kalakutskaya. Byul. Izobret. 2012;1. (in Russian).
---
For citation: Grigoriev S.V., Ryzhenkov A.V., Volkov A.V., Dasaev M.R., Trushin E.S., Likhaeva A.Yu. Reducing Flow Friction by Laser Texturing of an Ordered Relief on a Cylindrical Surface. Bulletin of MPEI. 2022;6:110—116. (in Russian). DOI: 10.24160/1993-6982-2022-6-110-116
---
The work is executed: Within the Framework of the Project «Improving the Efficiency of Low-boiling Working Substances Installations Based on the Use of Bifilic Heat Exchange Surfaces» with the support of a grant from the National Research University «MPEI» for the Implementation of Research Programs «Energy», «Electronics, Radio Engineering and IT» and «Industry 4.0 Technologies for Industry and Robotics» in 2020—2022

Published

2022-05-04

Issue

Section

Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)