Resulting Vectors of Multiphase Winding Discrete Voltage States
DOI:
https://doi.org/10.24160/1993-6982-2023-1-25-32Keywords:
resulting voltage vectors of discrete states, resulting voltage vector of continuous rotationAbstract
A multiphase bridge converter has a certain number of logical states (digital codes) depending on the number of its diagonals (number of phases): 8 logical states for three phases, 32 for five phases, 128 for seven phases, etc. When a symmetrical multiphase winding is connected to a multiphase converter, each logical state corresponds to the resulting discrete voltage vector. At a unity input voltage of the converters, the moduli of the resulting discrete state vectors have different values.
It has been found that the maximum modulus of the resulting vector of discrete voltage states of a multiphase system is equal to the maximum-to-minimum winding line-to-line voltage ratio. With increasing the number of phases, the modulus of the resulting vector of discrete voltage states tends to the modulus of the resulting continuous rotation vector, and the discrete process becomes continuous without implementing the sine-wave pulse width modulation (SPWM) mode. This opens the possibility to increase the voltage utilization factor and improve the motor vector control quality without changing its principles.
A generalized analytical expression for the maximum modulus of the resulting discrete voltage vector of a multiphase system with an odd number of phases has been obtained.
References
2. Виноградов А.Б. Векторное управление электроприводами переменного тока. Иваново: Изд-во Ивановского гос. энергетического ун-та имени В.И. Ленина, 2008.
3. Виноградов А.Б., Колодин И.Ю. Бездатчиковый асинхронный электропривод с адаптивно-векторной системой управления // Электричество. 2007. № 1. С. 44—50.
4. Козярук А.Е. Современные эффективные электроприводы производственных и транспортных механизмов // Электротехника. 2019. № 3. С. 33—37.
5. Томасов В.С., Усольцев А.А., Вертегел Д.А., Денисов К.М. Исследование пульсаций электромагнитного момента в прецизионном сервоприводе при синусоидальной широтно-импульсной модуляции // Научно-технический вестник информационных технологий, механики и оптики. 2019. Т. 19. № 2. С. 359—368.
6. Takahashi I., Noguchi T. A New Quick Response and High-efficiency Control Strategy of an Induction Motor // IEEE Trans. Ind. Appl. 1986. V. IA-22. No. 5. Pp. 820—827.
7. Blaschke F. The Principle of Field-orientation as Applied to the Transvector Closed Loop Control System for Rotating-field Machines // Siemens Rev. 1972. V. 34. No. 1. Pp. 217—220.
8. Терешкин В.М., Гришин Д.А., Терешкин В.В., Балгазин И.И. Алгоритмы управления пятифазного преобразователя, реализующие пространственно-векторную модуляцию // Вестник МЭИ. 2021. № 4. С. 86—94.
9. Tereshkin V. M., Grishin D.A., Balgazin I.I., Tereshkin V.V. Research of Control Algorithms for a Semiphasic Converter Implementing Spatial Vector Modulation // Proc. IEEE Intern. Conf. Electrotechnical Complexes and Syst. 2020. Pp. 383—387.
---
Для цитирования: Терешкин В.М., Гришин Д.А., Баландин С.П., Терешкин В.В. Результирующие векторы дискретных состояний напряжения многофазных обмоток // Вестник МЭИ. 2023. № 1. С. 25—32. DOI: 10.24160/1993-6982-2023-1-25-32.
#
1. Vinogradov A.B. Minimizatsiya Pul'satsiy Elektromagnitnogo Momenta Ventil'no-induktornogo Еlektroprivoda. Elektrichestvo. 2008;2:39—49. (in Russian).
2. Vinogradov A.B. Vektornoe Upravlenie Elektroprivodami Peremennogo Toka. Ivanovo: Izd-vo Ivanovskogo Gos. Energeticheskogo Un-ta Imeni V.I. Lenina, 2008. (in Russian).
3. Vinogradov A.B., Kolodin I.Yu. Bezdatchikovyy Asinkhronnyy Elektroprivod s Adaptivno-vektornoy Sistemoy Upravleniya. Elektrichestvo. 2007;1:44—50. (in Russian).
4. Kozyaruk A.E. Sovremennye Effektivnye Elektroprivody Proizvodstvennykh i Transportnykh Mekhanizmov. Elektrotekhnika. 2019;3:33—37. (in Russian).
5. Tomasov V.S., Usol'tsev A.A., Vertegel D.A., Denisov K.M. Issledovanie Pul'satsiy Elektromagnitnogo Momenta v Pretsizionnom Servoprivode pri Sinusoidal'noy Shirotno-impul'snoy Modulyatsii. Nauchno-tekhnicheskiy Vestnik Informatsionnykh Tekhnologiy, Mekhaniki i Optiki. 2019;19;2:359—368. (in Russian).
6. Takahashi I., Noguchi T. A New Quick Response and High-efficiency Control Strategy of an Induction Motor. IEEE Trans. Ind. Appl. 1986;IA-22;5:820—827.
7. Blaschke F. The Principle of Field-orientation as Applied to the Transvector Closed Loop Control System for Rotating-field Machines. Siemens Rev. 1972;34;1:217—220.
8. Tereshkin V.M., Grishin D.A., Tereshkin V.V., Balgazin I.I. Algoritmy Upravleniya Pyatifaznogo Preobrazovatelya, Realizuyushchie Prostranstvenno-vektornuyu Modulyatsiyu. Vestnik MEI. 2021;4:86—94. (in Russian).
9. TereshkinV. M., Grishin D.A., Balgazin I.I., Tereshkin V.V. Research of Control Algorithms for a Semiphasic Converter Implementing Spatial Vector Modulation. Proc. IEEE Intern. Conf. Electrotechnical Complexes and Syst. 2020:383—387.
---
For citation: Tereshkin V.M., Grishin D.A., Balandin S.P., Tereshkin V.V. Resulting Vectors of Multiphase Winding Discrete Voltage States. Bulletin of MPEI. 2023;1:25—32. (in Russian). DOI: 10.24160/1993-6982-2023-1-25-32.

