Water Chemistries of an Electrical Generator Cooling System
DOI:
https://doi.org/10.24160/1993-6982-2023-1-77-85Keywords:
electric generator stators, water cooling, water chemistry, corrosion, deposits, water qualityAbstract
At some thermal and nuclear power plants, water is used for cooling the electric generator stator windings with copper used as their main structural material. During operation of such cooling systems, certain problems are encountered as a consequence of copper corrosion and deposits formed on the inner surfaces of stator winding cooling channels. Inadequate quality of water circulating in the tubes is one of the factors causing the corrosion to occur. The article outlines the main stages of the corrosion and deposit formation processes: copper surface oxidation with formation of copper ions, formation of oxides on the metal surface, partial transfer of oxides from the metal surface into water, and carryover of oxides from one metal surface area to another. Four basic water chemistries for electric generator cooling water systems developed by the International Association for the Properties of Water and Steam (IAPWS) are discussed. These water chemistries are based on using low-oxygen (20–50 μg/dm3) and high-oxygen (2000 μg/dm3) treatments. The article gives the basic standardized and monitored indicators characterizing the water quality in electric generator cooling systems for the water chemistries developed by the IAPWS. Apart from the water chemistries described in the IAPWS technical document, the article presents data on the advantages of using reducing agents for cooling water treatment, e.g., hydrogen in concentrations ranging from 30 to 60 μg/dm3.
References
2. Busch H., Kretzer R. Betriebserfahrungen mit Wassergekühlten Statorwicklungen bei Drehstromgeneratoren (Operating Experiences with Water-cooled Stator Coils of Three-phase Alternators) // Proc. VGB Conf. Chemie im Kraftwerk (Speisewassertagung). 1968. Pp. 27—35.
3. Seipp H.G. Das Korrosionsverhalten von Kupfer in Wassergekühlten Generatorwicklungen (The Corrosion Behaviour of Copper in Water Cooled Generator Winding) // VGB Kraftwerkstechnik. 1979. V. 59. Pp. 245—248.
4. Svoboda R. Corrosion and Deposits in Water Cooled Generator Stator Windings. Pt. 1. Behaviour of Copper // J. Power Plant Chem. 2018. V. 20(5). Pp. 297—309.
5. Technical Guidance Document: Chemistry Management in Generator Water Cooling during Operation and Shutdown IAPWS Technical Guidance Documents [Электрон. ресурс] http://www.iapws.org/techguide.html (дата обращения 15.05.2022).
6. Svoboda R., Sandmann H., Seipp H. Water Chemistry in Generator Water Cooling System // Proc. Conf. Interaction of Non-iron-based Materials with Water and Steam. Piacenza, 1996. Pp. 29.1—29.30
7. Гаррелс Р.М., Крайст Ч.Л. Растворы, минералы, равновесия. М.: Мир, 1968.
8. Петрова Т.И. Основы методики построения диаграмм состояний железа и меди. М.: Изд-во МЭИ, 1976.
9. Homig H.E., Glass G. Paurbaix-diagramm fur Kupferin Ammoniakkhaltigen Josungen. VGB Speisewassertagung, 1966.
10. Svoboda R., Palmer D. Behaviour of Copper in Generator Stator Cooling Water System // J. Power Plant Chem. 2009. V. 11(2). Pp. 70—76.
11. Мартынова О.И., Петрова Т.И., Самойлов Ю.Ф. Организация водно-химического режима системы охлаждения контуров энергетических установок из материалов на основе меди // Теплоэнергетика. 1989. № 11. С. 21—24.
12. Петрова Т.И., Носова Н.П., Воронина М.П., Вороханов А.Б., Тупикина Н.В. Водно-химический режим системы охлаждения электрогенераторов на теплофикационных энергоблоках 250 МВт // Энергетик. 1990. № 3. С. 14—16.
13. Bauer T., Svoboda M., Svoboda R. Corrosion and Deposits in Water Cooled Generator Stator Windings. Pt. 3. Removal of Flow Restrictions // J. Power Plant Chem. 2019. V. 21(1). Pp. 10—22.
14. Bauer T., Svoboda M., Dockheer S., Svoboda R. Chemical Cleaning of Water-сooled Generators: Effect on System Materials // J. Power Plant Chem. 2014. V. 16(2). Pp. 94—104.
15. Nasri L., Leinonen P., Puzzuoli F., Swami D. Ontario Power Generation Experience with Stator Conductor Bars Fouling // Power and Plant Chem. 2003. V. 5(3). Pp. 155—162.
16. Drommi J.-L., Mesnage F. How to Prevent Hollow Conductor Plugging: EdF Solution for Aerated Systems // Ibid. Pp. 203—205.
---
Для цитирования: Петрова Т.И. Водно-химические режимы системы охлаждения электрогенераторов // Вестник МЭИ. 2023. № 1. С. 77—85. DOI: 10.24160/1993-6982-2023-1-77-85.
#
1. Svoboda R., Blecken W.D. Corrosion and Deposits in Water-cooled Generator Stator Windings: overview of Water Cooling of Generators. J. Power Plant Chem. 2018;20(5):290—294.
2. Busch H., Kretzer R. Betriebserfahrungen mit Wassergekühlten Statorwicklungen bei Drehstromgeneratoren (Operating Experiences with Water-cooled Stator Coils of Three-phase Alternators). Proc. VGB Conf. Chemie im Kraftwerk (Speisewassertagung). 1968:27—35.
3. Seipp H.G. Das Korrosionsverhalten von Kupfer in Wassergekühlten Generatorwicklungen (The Corrosion Behaviour of Copper in Water Cooled Generator Winding). VGB Kraftwerkstechnik. 1979;59:245—248.
4. Svoboda R. Corrosion and Deposits in Water Cooled Generator Stator Windings. Pt. 1. Behaviour of Copper. J. Power Plant Chem. 2018;20(5):297—309.
5. Technical Guidance Document: Chemistry Management in Generator Water Cooling during Operation and Shutdown IAPWS Technical Guidance Documents [Elektron. Resurs] http://www.iapws.org/techguide.html (Data Obrashcheniya 15.05.2022).
6. Svoboda R., Sandmann H., Seipp H. Water Chemistry in Generator Water Cooling System. Proc. Conf. Interaction of Non-iron-based Materials with Water and Steam. Piacenza, 1996:29.1—29.30
7. Garrels R.M., Krayst Ch.L. Rastvory, Mineraly, Ravnovesiya. M.: Mir, 1968. (in Russian).
8. Petrova T.I. Osnovy Metodiki Postroeniya Diagramm Sostoyaniy Zheleza i Medi. M.: Izd-vo MEI, 1976. (in Russian).
9. Homig H.E., Glass G. Paurbaix-diagramm fur Kupferin Ammoniakkhaltigen Josungen. VGB Speisewassertagung, 1966.
10. Svoboda R., Palmer D. Behaviour of Copper in Generator Stator Cooling Water System. J. Power Plant Chem. 2009;11(2):70—76.
11. Martynova O.I., Petrova T.I., Samoylov Yu.F. Organizatsiya Vodno-khimicheskogo Rezhima Sistemy Okhlazhdeniya Konturov Energeticheskikh Ustanovok iz Materialov na Osnove Medi. Teploenergetika. 1989;11:21—24. (in Russian).
12. Petrova T.I., Nosova N.P., Voronina M.P., Vorokhanov A.B., Tupikina N.V. Vodno-khimicheskiy Rezhim Sistemy Okhlazhdeniya Elektrogeneratorov na Teplofikatsionnykh Energoblokakh 250 MVt. Energetik. 1990;3:14—16. (in Russian).
13. Bauer T., Svoboda M., Svoboda R. Corrosion and Deposits in Water Cooled Generator Stator Windings. Pt. 3. Removal of Flow Restrictions. J. Power Plant Chem. 2019;21(1):10—22.
14. Bauer T., Svoboda M., Dockheer S., Svoboda R. Chemical Cleaning of Water-sooled Generators: Effect on System Materials. J. Power Plant Chem. 2014;16(2):94—104.
15. Nasri L., Leinonen P., Puzzuoli F., Swami D. Ontario Power Generation Experience with Stator Conductor Bars Fouling. Power and Plant Chem. 2003;5(3):155—162.
16. Drommi J.-L., Mesnage F. How to Prevent Hollow Conductor Plugging: EdF Solution for Aerated Systems. Ibid:203—205.
---
For citation: Petrova T.I. Water Chemistries of an Electrical Generator Cooling System. Bulletin of MPEI. 2023;1:77—85. (in Russian). DOI: 10.24160/1993-6982-2023-1-77-85.

