Combustion Characteristics of Lignite Carbonizate and the Possibility of Using It as Power Plant Fuel
DOI:
https://doi.org/10.24160/1993-6982-2023-1-106-112Keywords:
coal, carbonizate, partial gasification, combustion, thermogravimetric analysis, resource saving, power plant fuelAbstract
The involvement of high-calorific fuel, such as carbonized coal, in the country’s fuel and energy balance can have a beneficial effect on the overall saving of solid fossil fuel resources in the production of heat and electricity. To this end, a comparative analysis was carried out, including determination of the main combustion characteristics of Borodino coal and carbonizate obtained by partially gasifying Borodino brown coal at temperatures of 700–800°С in a batch reactor. To do so, the thermal and elemental composition of fuels was determined, and a qualitative assessment of fuel particle surfaces was carried out using the scanning electron microscopy method. Using the thermogravimetric analysis method, the following parameters of coal and lignite carbonizate were determined: the coke residue ignition and burnout temperature, the maximum combustion reaction rate, the mass variation rate at different combustion stages, the exothermic and endothermic reactions intervals, and the maximum heat flux intensity. The effect the release of volatiles has on the combustion process in the course of heating has been noted. It has been shown that the coal carbonizate ignition temperature is by 30% higher than that of coal; the burnout temperature is by 25% higher, whereas the carbonizate specific heating value is 1.8 times higher than that of coal. The accomplished assessment of carbonizate properties has demonstrated the possibility of its use at thermal power facilities as supplementary power plant fuel.
References
2. Елсуков В.К., Латушкина С.В. Образование и снижение оксидов азота при сжигании Канско-Ачинских углей на котлах с жидким шлакоудалением // Труды Братского гос. ун-та. Серия «Естественные и инженерные науки». 2018. № 1. С. 74—79.
3. Шишканов О.Г., Андруняк И.В. Управление положением факела в топочной камере котла Е-500 при тангенциальном пылеугольном сжигании // Промышленная энергетика. 2021. № 1. С. 35—43.
4. Халид Эль-Шейх и др. Образование и подавление выбросов NOx и N2O при сжигании топлив в среде кислорода с рециркуляцией CO2 (обзор) // Теплоэнергетика. 2020. № 1. С. 5—14.
5. Жуйков А.В., Матюшенко А.И. Способы получения и практического применения синтез-газа (обзор) // Журнал Сибирского федерального ун-та Серия «Техника и технологии». 2020. Т. 13. № 4. С. 383—405.
6. Исламов С.Р. Термическая переработка как новый уровень обогащения угля // Уголь. 2020. № 5. С. 48—53.
7. Степанов С.Г., Михалев И.О., Евтушенко Е.М., Логинов Д.А., Деменчук С.В. Бездымное бытовое топливо: опыт применения в Красноярске // Уголь. 2020. № 12. С. 56—62.
8. Wang C., Wang C., Tang G., Zhang J., Gao X., Che D. Co-combustion Behaviors and NO Formation Characteristics of Semi-coke and Antibiotic Filter Residue under Oxy-fuel Condition // Fuel. 2022. V. 319(6). P. 123779.
9. Zheng S., Hu Y., Wang Z., Cheng X. Experimental Investigation on Ignition and Burnout Characteristics of Semi-coke and Bituminous Coal Blends // J. Energy Inst. 2020. V. 93(4). Pp. 1373—1381.
10. Жуйков А.В., Матюшенко А.И., Кузнецов П.Н., Стебелева О.П., Самойло А.С. Термогравиметрический анализ горения каменных углей Республики Хакасия, сосновых опилок и их смесей // Журнал Сибирского федерального ун-та. Серия «Техника и технологии». 2021. Т. 14. № 6. С. 611—622.
11. Cao Y., Liu Y., Li Z., Zong P., Hou J., Zhang Q., Gou X. Synergistic Effect, Kinetics, and Pollutant Emission Characteristics of Сo-combustion of Polymer-containing Oily Sludge and Cornstalk Using TGA and Fixed-bed Reactor // Renew. Energy. 2022. V. 185. Pp. 748—758.
12. Богомолов А.Р., Петров И.Я., Жалмагамбетова У.К. Термический анализ углей казахстанских месторождений // Теплоэнергетика. 2020. № 3. С. 24—32.
13. Cong K., Han F., Zhang Y., Li Q. The Investigation of Co-combustion Characteristics of Tobacco Stalk and low Rank Coal Using a Macro-TGA // Fuel. 2019. V. 237. Pp. 126—132.
14. Liu Z., Quek A., Kent Hoekman S., Srinivasan M.P., Balasubramanian R. Thermogravimetric Investigation of Hydrochar-lignite Co-combustion // Bioresour. Technol. 2013. V. 133. Pp. 646—652.
15. Ding G., He B., Yao H., Cao Y., Su L., Duan Z. Co-combustion Behaviors of Municipal Solid Waste and Low-rank Coal Semi-coke in Air or Oxygen/carbon Dioxide Atmospheres // J. Therm. Anal. Calorim. 2021. V. 143. Pp. 619—635.
16. Wang C., Wang F., Yang Q., Liang R. Thermogravimetric Studies of the Behavior of Wheat Straw with Added Coal During Combustion // Biomass Bioenergy. 2009. V. 33. Pp. 50—56.
17. Li X.G., Ma B.G., Xu L., Hu Z-W., Wang X-G. Thermogravimetric Analysis of the Co-combustion of the Blends with High Ash Coal and Waste Tyres // Thermochim. Acta. 2006. V. 441. Pp. 79—83.
18. Lu J-J., Chen W-H. Investigation on the Ignition and Burnout Temperatures of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis // Appl. Energy. 2015. V. 160. Pp. 49—57.
19. Niu S.L., Han K.H., Lu C.M. Characteristic of Coal Combustion in Oxygen/carbon Dioxide Atmosphere and Nitric Oxide Release During this Process // Energy Convers. Manag. 2011. V. 52. Pp. 532—537.
20. Bala-Litwiniak A., Zajemska M. Computational and Experimental Study of Pine and Sunflower Husk Pellet Combustion and Co-combustion with Oats in Domestic Boiler // Renew. Energy. 2020. V. 162. Pp. 151—159.
21. Майданик М.Н., Вербовецкий Э.Х., Тугов А.Н. Предварительная оценка возможности перевода котлов тепловых электростанций на сжигание альтернативного угля // Теплоэнергетика. 2021. № 9. С. 33—42.
22. Дубровский В.А. Методы и средства повышения эффективности энергетического использования углей Канско-Ачинского бассейна: дис. … доктора технических наук. Красноярск: Изд-во Сибирского федерального ун-та, 2008.
---
Для цитирования: Жуйков А.В., Матюшенко А.И., Логинов Д.А. Характеристики горения буроугольного карбонизата и возможность его применения в качестве энергетического топлива // Вестник МЭИ. 2023. № 1. С. 106—112. DOI: 10.24160/1993-6982-2023-1-106-112.
---
Работа выполнена при поддержке: Красноярского краевого фонда науки в рамках проекта «Концепция развития теплоэнергетики Красноярского края»
#
1. Semikashev V.V., Gayvoronskaya M.S. Analiz Tekushchego Sostoyaniya i Perspektivy Gazifikatsii Rossii na Period do 2030 g. Problemy Prognozirovaniya. 2022;1:91—100. (in Russian).
2. Elsukov V.K., Latushkina S.V. Obrazovanie i Snizhenie Oksidov Azota pri Szhiganii Kansko-Achinskikh Ugley na Kotlakh s Zhidkim Shlakoudaleniem. Trudy Bratskogo Gos. Un-ta. Seriya «Estestvennye i Inzhenernye Nauki». 2018;1:74—79. (in Russian).
3. Shishkanov O.G., Andrunyak I.V. Upravlenie Polozheniem Fakela v Topochnoy Kamere Kotla E-500 pri Tangentsial'nom Pyleugol'nom Szhiganii. Promyshlennaya Energetika. 2021;1:35—43. (in Russian).
4. Khalid El'-Sheykh i dr. Obrazovanie i Podavlenie Vybrosov NOx i N2O pri Szhiganii Topliv v Srede Kisloroda s Retsirkulyatsiey CO2 (obzor). Teploenergetika. 2020;1:5—14. (in Russian).
5. Zhuykov A.V., Matyushenko A.I. Sposoby Polucheniya i Prakticheskogo Primeneniya Sintez-gaza (Obzor). Zhurnal Sibirskogo Federal'nogo Un-ta Seriya «Tekhnika i Tekhnologii». 2020;13;4:383—405. (in Russian).
6. Islamov S.R. Termicheskaya Pererabotka kak Novyy Uroven' Obogashcheniya Uglya. Ugol'. 2020;5:48—53. (in Russian).
7. Stepanov S.G., Mikhalev I.O., Evtushenko E.M., Loginov D.A., Demenchuk S.V. Bezdymnoe Bytovoe Toplivo: Opyt Primeneniya v Krasnoyarske. Ugol'. 2020;12:56—62. (in Russian).
8. Wang C., Wang C., Tang G., Zhang J., Gao X., Che D. Co-combustion Behaviors and NO Formation Characteristics of Semi-coke and Antibiotic Filter Residue under Oxy-fuel Condition. Fuel. 2022;319(6):123779.
9. Zheng S., Hu Y., Wang Z., Cheng X. Experimental Investigation on Ignition and Burnout Characteristics of Semi-coke and Bituminous Coal Blends. J. Energy Inst. 2020;93(4):1373—1381.
10. Zhuykov A.V., Matyushenko A.I., Kuznetsov P.N., Stebeleva O.P., Samoylo A.S. Termogravimetricheskiy Analiz Goreniya Kamennykh Ugley Respubliki Khakasiya, Sosnovykh Opilok i Ikh Smesey. Zhurnal Sibirskogo Federal'nogo Un-ta. Seriya «Tekhnika i Tekhnologii». 2021;14;6:611—622. (in Russian).
11. Cao Y., Liu Y., Li Z., Zong P., Hou J., Zhang Q., Gou X. Synergistic Effect, Kinetics, and Pollutant Emission Characteristics of So-combustion of Polymer-containing Oily Sludge and Cornstalk Using TGA and Fixed-bed Reactor. Renew. Energy. 2022;185:748—758.
12. Bogomolov A.R., Petrov I.Ya., Zhalmagambetova U.K. Termicheskiy Analiz Ugley Kazakhstanskikh Mestorozhdeniy. Teploenergetika. 2020;3:24—32. (in Russian).
13. Cong K., Han F., Zhang Y., Li Q. The Investigation of Co-combustion Characteristics of Tobacco Stalk and low Rank Coal Using a Macro-TGA. Fuel. 2019;237:126—132.
14. Liu Z., Quek A., Kent Hoekman S., Srinivasan M.P., Balasubramanian R. Thermogravimetric Investigation of Hydrochar-lignite Co-combustion. Bioresour. Technol. 2013;133:646—652.
15. Ding G., He B., Yao H., Cao Y., Su L., Duan Z. Co-combustion Behaviors of Municipal Solid Waste and Low-rank Coal Semi-coke in Air or Oxygen/carbon Dioxide Atmospheres. J. Therm. Anal. Calorim. 2021;143:619—635.
16. Wang C., Wang F., Yang Q., Liang R. Thermogravimetric Studies of the Behavior of Wheat Straw with Added Coal During Combustion. Biomass Bioenergy. 2009;33:50—56.
17. Li X.G., Ma B.G., Xu L., Hu Z-W., Wang X-G. Thermogravimetric Analysis of the Co-combustion of the Blends with High Ash Coal and Waste Tyres. Thermochim. Acta. 2006;441:79—83.
18. Lu J-J., Chen W-H. Investigation on the Ignition and Burnout Temperatures of Bamboo and Sugarcane Bagasse by Thermogravimetric Analysis. Appl. Energy. 2015;160:49—57.
19. Niu S.L., Han K.H., Lu C.M. Characteristic of Coal Combustion in Oxygen/carbon Dioxide Atmosphere and Nitric Oxide Release During this Process. Energy Convers. Manag. 2011;52:532—537.
20. Bala-Litwiniak A., Zajemska M. Computational and Experimental Study of Pine and Sunflower Husk Pellet Combustion and Co-combustion with Oats in Domestic Boiler. Renew. Energy. 2020;162:151—159.
21. Maydanik M.N., Verbovetskiy E.Kh., Tugov A.N. Predvaritel'naya Otsenka Vozmozhnosti Perevoda Kotlov Teplovykh Elektrostantsiy na Szhiganie Al'ternativnogo Uglya. Teploenergetika. 2021;9:33—42. (in Russian).
22. Dubrovskiy V.A. Metody i Sredstva Povysheniya Effektivnosti Energeticheskogo Ispol'zovaniya Ugley Kansko-Achinskogo Basseyna: Dis. … Doktora Tekhnicheskikh Nauk. Krasnoyarsk: Izd-vo Sibirskogo Federal'nogo Un-ta, 2008. (in Russian).
---
For citation: Zhuikov A.V., Matyushenko A.I., Loginov D.A. Combustion Characteristics of Lignite Carbonizate and the Possibility of Using It as Power Plant Fuel. Bulletin of MPEI. 2023;1:106—112. (in Russian). DOI: 10.24160/1993-6982-2023-1-106-112.
---
The work is executed at support: Krasnoyarsk Regional Science Foundation within the Framework of the Project «The Concept of Development of Thermal Power Engineering of the Krasnoyarsk Territory»

