Assessment of the Power Equipment State by Measuring Dielectric Absorption Currents
DOI:
https://doi.org/10.24160/1993-6982-2023-2-19-26Keywords:
state diagnostics methods, power equipment, structural polarization, dielectric absorption spectrum, polarization mechanisms, state estimation reliabilityAbstract
The need to operate electrical devices the design capabilities of which have been exhausted almost completely under the conditions of more stringent reliability requirements gives rise to increased attention to the development and research of methods for diagnosing the power equipment state. This problem acquires not only a scientific interest, but also practical significance, which follows, in particular, from the mass-scale use of power transformers for operating voltages above 35 kV. One of promising development lines is the method of constructing dielectric absorption spectra, which is based on using the capabilities of isothermal depolarization current measurements. In this case, the information that accumulates as a result of the insulation system’s dielectric medium polarization as a certain number of loosely coupled charges displaced from their locations is adequate (equivalent) to the information obtained as a result of depolarization when measuring the return voltage (RV) value. Owing to the above-mentioned adequacy, it is possible to use the quantity tI(t) as a parameter for monitoring the state of the power equipment insulation system. The spectrum construction algorithm presented in the article is similar to the algorithm for constructing the RV spectrum, but is produced in the course of computer-aided processing of measurement results using the time windows that specify the insulation gap polarization time interval. As a result, it becomes possible not only to produce the dielectric absorption spectrum, but also to calculate the values of the main parameters characterizing the gap state.
References
2. Bouaicha A., Fofana I. Dielectric Spectroscopy Techniques as Quality Control Tool: Feasibility Study // IEEE Electrical Insulation Magazine. 2009. V. 1. Pp. 6—14.
3. Van Schaik N. e. a. Medium Voltage Cables Diagnostics Condition Based Maintenance on Power Cables // Proc. Nordic Insulation Symp. Stockholm, 2001. Pp. 1—10.
4. Gorden B. e. a. Calculation of Power Transformer Health Index // Annals of the University of Craiova. Electrical Engineering Series 2010. V. 34. Pp. 13—18.
5. High Voltage Testing MV Cables. Test Method: Dielectric Response Analysis [Электрон. ресурс] http://www.neetrac.gatech.edu (дата обращения 08.02.2022).
6. Nemeth E. Measuring Voltage Response a Non-destructive Diagnostic Test Method of HV Insulation // IEEE Proc. Sci. Measurement and Technol. 1999. V. 146(5). Pp. 249—252.
7. Badicu L.V. e. a. Use of Dielectric Spectroscopy to Estimate the Condition of Cellulose-Based Insulation // J. Electrical and Electronic Eng. 2009. V. 2(1). Pp. 7—12.
8. Blatam-Megherbi F., Mekious M., Megherbi M. A Recovery Voltage as Non-destructive Tool for Moisture Appreciation of Oil Impregnated Pressboard: an Approach for Power Transformers Testing // Intern. J. Electrical En. and Informatics. 2013. V. 5(4). Pp. 422—432.
9. Hoff G., Kranz H. On-site Dielectric Diagnostic of Power Cables Using the Isothermal Relaxation Current Measurements // IEEE Power Eng. Soc. 2000. V. 3. Pp. 1593—1598.
10. Jian Hao e. a. Quantative Analysis Ageing Status of Natural Ester-paper Insulation and mineral Oil-paper Insulation by Polarization/Depolarization // IEEE Trans. Dielectrics and Electrical Insulation. 2012. V. 19(1). Pp. 188—199.
11. Saha K.T. Review of Time-domain Polarization Measurement for Assessing Insulation Condition in Aged Transformers Transact // Power Delivery. 2003. V. 18(4). Pp. 1293—1301.
---
Для цитирования: Чернышев В.А., Образцов С.А., Зинченко К.А. Оценка состояния энергетического оборудования методом измерения токов диэлектрической абсорбции // Вестник МЭИ. 2023. № 2. С. 19—26. DOI: 10.24160/1993-6982-2023-2-19-26.
#
1. Antonenko I.N. Risk-orientirovannyy Podkhod k Upravleniyu Proizvodstvennymi Aktivami Energetiki. Energoekspert. 2020;1:26—33. (in Russian).
2. Bouaicha A., Fofana I. Dielectric Spectroscopy Techniques as Quality Control Tool: Feasibility Study. IEEE Electrical Insulation Magazine. 2009;1:6—14.
3. Van Schaik N. e. a. Medium Voltage Cables Diagnostics Condition Based Maintenance on Power Cables. Proc. Nordic Insulation Symp. Stockholm, 2001:1—10.
4. Gorden B. e. a. Calculation of Power Transformer Health Index. Annals of the University of Craiova. Electrical Engineering Series 2010;34:13—18.
5. High Voltage Testing MV Cables. Test Method: Dielectric Response Analysis [Elektron. Resurs] http://www.neetrac.gatech.edu (Data Obrashcheniya 08.02.2022).
6. Nemeth E. Measuring Voltage Response a Non-destructive Diagnostic Test Method of HV Insulation. IEEE Proc. Sci. Measurement and Technol. 1999;146(5):249—252.
7. Badicu L.V. e. a. Use of Dielectric Spectroscopy to Estimate the Condition of Cellulose-Based Insulation. J. Electrical and Electronic Eng. 2009;2(1):7—12.
8. Blatam-Megherbi F., Mekious M., Megherbi M. A Recovery Voltage as Non-destructive Tool for Moisture Appreciation of Oil Impregnated Pressboard: an Approach for Power Transformers Testing. Intern. J. Electrical En. and Informatics. 2013;5(4):422—432.
9. Hoff G., Kranz H. On-site Dielectric Diagnostic of Power Cables Using the Isothermal Relaxation Current Measurements. IEEE Power Eng. Soc. 2000;3:1593—1598.
10. Jian Hao e. a. Quantative Analysis Ageing Status of Natural Ester-paper Insulation and mineral Oil-paper Insulation by Polarization/Depolarization. IEEE Trans. Dielectrics and Electrical Insulation. 2012;19(1):188—199.
11. Saha K.T. Review of Time-domain Polarization Measurement for Assessing Insulation Condition in Aged Transformers Transact. Power Delivery. 2003;18(4):1293—1301.
---
For citation: Chernyshev V.A., Obraztsov S.A., Zinchenko K.A. Assessment of the Power Equipment State by Measuring Dielectric Absorption Currents. Bulletin of MPEI. 2023;2:19—26. (in Russian). DOI: 10.24160/1993-6982-2023-2-19-26.

