Mathematical Iterative-adaptive Model of the Process of Establishing a Stationary Thermal State of Contact-current-carrying Contactor Circuits
DOI:
https://doi.org/10.24160/1993-6982-2023-2-27-36Keywords:
electromechanical switching device, electromagnetic contactor, electromagnetic air contactor, mathematical model, stationary thermal heatingAbstract
The aim of the study is to develop a verified iterative-adaptive mathematical model of the process through which a stationary thermal state of the contactor live circuits settles. The mathematical model verification matters are discussed along with matters concerned with elaborating a methodology for automated verification of research data for compliance with the GOST (IEC) criteria.
The problem in question was theoretically studied using the COMSOL Multiphysics cross-platform software based on a finite element analysis.
The experimental studies were carried out by conducting the overheating tests in an eight-hour mode, according to GOST IEC 60947-1-2017. The test was carried out by supplying a sinusoidal current Ith = 850 A at 50 Hz frequency.
A mathematical model has been developed. The obtained study results have been verified against experimental data. Work has been carried out to create a methodology for automated verification of research data for compliance with the GOST (IEC) criteria.
The study results apply to low-voltage contactors with arc quenching in air at atmospheric pressure that fall under the following standards: GOST IEC 60947-1-2017, GOST IEC 60947-4-2021 and GOST IEC 61095-2015.
The developed and tested mathematical model shows good convergence performance and makes it possible to adequately describe the stationary heating of the contact and conducting circuit, thereby opening the possibility to use it for approximately evaluating the heating of the contactor live systems. The developed iterative-adaptive application software is an efficient tool, which helps reduce various kinds of costs in the development and refinement of contactor live circuits.
References
2. Ковалев А.А., Паныч Д.С. Моделирование тепловых процессов в контактном проводе методом конечных элементов в программном комплексе Comsol Multiphysics 5.2 // Инновационный транспорт. 2017. № 2(25). С. 49—52.
3. Паранин А.В., Ефимов А.В., Ефимов Д.А. Моделирование чистого контакта между контактным проводом и токосъемной пластиной в статике методом конечных элементов // Известия Транссиба. 2014. № 1(17). С. 57—67.
4. Plesca A.T. Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method // Intern. J. Electrical, Computer, Energetic, Electronic and Communication Eng. 2012. V. 6(12). Pp. 1479—1487.
5. Квашнин А.О. Моделирование и разработка системы дугогашения низковольтного автоматического выключателя: автореф. дисс. … канд. тех. наук. СПб.: Санкт-Петербургский политехн. ун-т им. Петра Великого, 2020.
6. ГОСТ 403—73. Аппараты электрические на напряжение до 1000 В. Допустимые температуры нагрева частей аппаратов.
7. ГОСТ IEC 60947-1—2017. Аппаратура распределения и управления низковольтная. Ч. 1. Общие правила.
8. ГОСТ IEC 60947-4—2021. Аппаратура распределения и управления низковольтная. Ч. 4-1. Контакторы и пускатели. Электромеханические контакторы и пускатели.
9. Slade P.G. Electrical Contacts Priciples and Application. London: CRC Press Taylor and Francis Group, 2014.
10. Braunovic M. Effect of Connection Design on the Contact Resistance of High Power Overlapping Bolted Joints // IEEE Trans. Components and Packaging Technologies. 2002. V. 25(4). Pp. 220—229.
11. Książkiewicz A., Janiszewski J., Batura R. Influence of Short-сircuit Ac Currents on Electrical Contact Resistance of Low Voltage Relays // Poznan University of Technology Academic J. Electrical Eng. 2012. V. 70. Pp. 99—103.
12. Introduction to Application Builder in COMSOL [Электрон. ресурс] https://cdn.comsol.com/doc/5.5/IntroductionToApplicationBuilder.pdf (дата обращения 20.01.2023).
13. Dragomir A., Adam M., Andruşcă M., Munteanu A. Long Term Thermal Stresses of a Withdrawable Electrical Contact // Proc. VI Intern. Conf. Modern Power Systems. ClujNapoca, 2015. Pp. 83—87.
14. Andruşcă M., Adam M., Burlica R., Munteanu A., Dragomir A. Considerations regarding the Influence of Contact Resistance on the Contacts of Low Voltage Electrical Equipment // Proc. Intern. Conf. and Exposition on Electrical and Power Eng. Iasi, 2016. Pp. 123—128.
15. Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. М.: Энергия, 1969.
16. Госреестр РФ 28005-08. Устройства для проверки токовых расцепителей автоматических выключателей УПТР-1МЦ, УПТР-2МЦ, УПТР-3МЦ.
17. COMSOL Documentation. User’s Guide. The Electric Currents Interface. Electrical Contact [Электрон. ресурс] https://blogs.ethz.ch/ps_comsol/files/2020/05/COMSOLMultiphysicsUsersGuide.pdf (дата обращения 20.01.2023).
18. COMSOL Documentation. Solid Mechanics [Электрон. ресурс] https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_structuralmechanics.22.02.html (дата обращения 20.01.2023).
19. Сахаров П.В. Проектирование электрических аппаратов. М.: Энергия, 1971. С. 55—56.
20. Сипайлова Н.Ю. Вопросы проектирования электрических аппаратов: Томск: Изд-во Томского политехн. ун-та, 2014. С. 43—51.
21. Герасимов В.Г. Электротехнический справочник. В 4-х т. Т. 1. Общие вопросы. Электротехнические материалы. М.: Изд-во МЭИ, 2003.
22. Ferrari A., Russo M. Introducing Microsoft Power BI. N.-Y.: Microsoft Press, 2016.
23. Ferrari A., Russo M. Data Analysis Expressions (DAX) Reference [Электрон. ресурс] https://download.microsoft.com/download/0/F/B/0FBFAA46-2BFD-478F-8E56-7BF3C672DF9D/Data%20Analysis%20Expressions%20-%20DAX%20-%20Reference.pdf (дата обращения 20.01.2023).
---
Для цитирования: Верстунин А.Ю. Математическая итеративно-адаптационная модель процесса установления стационарного теплового состояния контактно-токоведущих контуров контакторов // Вестник МЭИ. 2023. № 2. С. 27—36. DOI: 10.24160/1993-6982-2023-2-27-36.
#
1. Nikolaev P.O., Pavleyno M.A., Chalyy A.M. Chislennoe Modelirovanie Statsionarnykh Teplovykh Poley v Tokonesushchikh Konstruktsiyakh. Proektirovanie Inzhenernykh i Nauchnykh Prilozheniy v Srede Matlab: Trudy III Vseros. Nauch. Konf. SPb., 2007:308—319. (in Russian).
2. Kovalev A.A., Panych D.S. Modelirovanie Teplovykh Protsessov v Kontaktnom Provode Metodom Konechnykh Elementov v Programmnom Komplekse Comsol Multiphysics 5.2. Innovatsionnyy Transport. 2017;2(25):49—52. (in Russian).
3. Paranin A.V., Efimov A.V., Efimov D.A. Modelirovanie Chistogo Kontakta Mezhdu Kontaktnym Provodom i Tokos'emnoy Plastinoy v Statike Metodom Konechnykh Elementov. Izvestiya Transsiba. 2014;1(17):57—67. (in Russian).
4. Plesca A.T. Thermal Analysis of the Current Path from Circuit Breakers Using Finite Element Method. Intern. J. Electrical, Computer, Energetic, Electronic and Communication Eng. 2012;6(12):1479—1487.
5. Kvashnin A.O. Modelirovanie i Razrabotka Sistemy Dugogasheniya Nizkovol'tnogo Avtomaticheskogo Vyklyuchatelya: Avtoref. Diss. … Kand. Tekh. Nauk. SPb.: Sankt-Peterburgskiy Politekhn. Un-t im. Petra Velikogo, 2020. (in Russian).
6. GOST 403—73. Apparaty Elektricheskie na Napryazhenie do 1000 V. Dopustimye Temperatury Nagreva Chastey Apparatov. (in Russian).
7. GOST IEC 60947-1—2017. Apparatura Raspredeleniya i Upravleniya Nizkovol'tnaya. Ch. 1. Obshchie Pravila. (in Russian).
8. GOST IEC 60947-4—2021. Apparatura Raspredeleniya i Upravleniya Nizkovol'tnaya. Ch. 4-1. Kontaktory i Puskateli. Elektromekhanicheskie Kontaktory i Puskateli. (in Russian).
9. Slade P.G. Electrical Contacts Priciples and Application. London: CRC Press Taylor and Francis Group, 2014.
10. Braunovic M. Effect of Connection Design on the Contact Resistance of High Power Overlapping Bolted Joints. IEEE Trans. Components and Packaging Technologies. 2002;25(4):220—229.
11. Książkiewicz A., Janiszewski J., Batura R. Influence of Short-sircuit Ac Currents on Electrical Contact Resistance of Low Voltage Relays. Poznan University of Technology Academic J. Electrical Eng. 2012;70:99—103.
12. Introduction to Application Builder in COMSOL [Elektron. Resurs] https://cdn.comsol.com/doc/5.5/IntroductionToApplicationBuilder.pdf (Data Obrashcheniya 20.01.2023).
13. Dragomir A., Adam M., Andruşcă M., Munteanu A. Long Term Thermal Stresses of a Withdrawable Electrical Contact. Proc. VI Intern. Conf. Modern Power Systems. ClujNapoca, 2015:83—87.
14. Andruşcă M., Adam M., Burlica R., Munteanu A., Dragomir A. Considerations regarding the Influence of Contact Resistance on the Contacts of Low Voltage Electrical Equipment. Proc. Intern. Conf. and Exposition on Electrical and Power Eng. Iasi, 2016:123—128.
15. Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha. M.: Energiya, 1969. (in Russian).
16. Gosreestr RF 28005-08. Ustroystva dlya Proverki Tokovykh Rastsepiteley Avtomaticheskikh Vyklyuchateley UPTR-1MTS, UPTR-2MTS, UPTR-3MTS. (in Russian).
17. COMSOL Documentation. User’s Guide. The Electric Currents Interface. Electrical Contact [Elektron. Resurs] https://blogs.ethz.ch/ps_comsol/files/2020/05/COMSOLMultiphysicsUsersGuide.pdf (Data Obrashcheniya 20.01.2023).
18. COMSOL Documentation. Solid Mechanics [Elektron. Resurs] https://doc.comsol.com/5.5/doc/com.comsol.help.comsol/comsol_ref_structuralmechanics.22.02.html (Data Obrashcheniya 20.01.2023).
19. Sakharov P.V. Proektirovanie Elektricheskikh Apparatov. M.: Energiya, 1971:55—56. (in Russian).
20. Sipaylova N.Yu. Voprosy Proektirovaniya Elektricheskikh Apparatov: Tomsk: Izd-vo Tomskogo Politekhn. Un-ta, 2014:43—51. (in Russian).
21. Gerasimov V.G. Elektrotekhnicheskiy Spravochnik. V 4-kh t. T. 1. Obshchie Voprosy. Elektrotekhnicheskie Materialy. M.: Izd-vo MEI, 2003. (in Russian).
22. Ferrari A., Russo M. Introducing Microsoft Power BI. N.-Y.: Microsoft Press, 2016.
23. Ferrari A., Russo M. Data Analysis Expressions (DAX) Reference [Elektron. Resurs] https://download.microsoft.com/download/0/F/B/0FBFAA46-2BFD-478F-8E56-7BF3C672DF9D/Data%20Analysis%20Expressions%20-%20DAX%20-%20Reference.pdf (Data Obrashcheniya 20.01.2023).
---
For citation: Verstunin A.Yu. Iterative-adaptive Mathematical Model of Settling a Stationary Thermal State of the Contactor Live Circuits. Bulletin of MPEI. 2023;2:27—36. (in Russian). DOI: 10.24160/1993-6982-2023-2-27-36.

