Application of the Wave Channels Method to Analyze the Switching Overvoltages in Energizing a High-voltage Cable Line
DOI:
https://doi.org/10.24160/1993-6982-2023-2-68-76Keywords:
cable line, switching overvoltages, residual charge, source inductance, phase-modal transformation, wave channelAbstract
A study of cable line failures shows that a large number of faults occur in the connecting and terminal couplings of 110--500 kV power lines. Overvoltages caused by operational switching in the substation switchgear circuits contribute to the total number of failures. The switching overvoltage amplitude and frequency depend on the parameters of the source, switched circuits, and switching moment.
The aim of the study is to identify the network and switched circuit parameters affecting the maximum overvoltage excited by energizing a 400 kV cable line and to determine the degree of their influence. The following factors are considered: switching phase, cable line length, source inductance, and line residual charge. The analysis was carried out by the wave channels method.
To achieve this goal, an analysis model was developed in the EMTP-RV software environment, which made it possible to calculate the electromagnetic transients excited by cable line switching. The model has been verified with respect to the surge propagation velocity along a coaxial wave channel. Overvoltage calculations have shown that the switching phase and the line charge availability in the pre-switching operation mode have the most significant effect on the overvoltage value.
The obtained study results apply to high-voltage electrical networks containing cable lines. The study results made it possible to quantify the degree to which the considered factors influence the overvoltages excited by switching 400 kV cable lines and to assess possible exceeding of the values permitted by the relevant standards, which will make it possible to have a preventive influence on the number of failures.
References
2. Liao Y. e. a. Breakdown Failure Analysis of 220 kV Cable Joint with Large Expanding Rate under Closing Overvoltage // Eng. Failure Analysis. 2021. V. 120. Pp. 1—15.
3. Lai Q. e. a. Investigation of Tail Pipe Breakdown Incident for 110 kV Cable Termination and Proposal of Fault Prevention // Eng. Failure Analysis. 2020. V. 108. P. 104353.
4. Wang H. e. a. Analysis of Transient Characteristics in the 110kV Cable Joint System During Switch Closing // Proc. II Intern. Conf. Electrical Materials and Power Equipment. 2019. Pp. 395—399.
5. Chen S. e. a. Analysis and Countermeasure of 110KV Cable Joint Defects // Proc. IEEE III Conf. Energy Internet and Energy System Integration. 2019. Pp. 2342—2345.
6. Liao Y. e. a. Numerical Analysis of Transient Overvoltages from Sequential Switching of 220 kV Tunnel Cables // Proc. IV Intern. Conf. Electric Power Equipment-Switching Technol. 2017. Pp. 1002—1005.
7. Ren H., Zhang Y. Analysis on Switching Overvoltage and Suppression Method of Cable Joint in 500 kV Cable Line // Energy Rep. 2021. V. 7. Pp. 567—575.
8. Da Silva F.F., Bak C.L. Electromagnetic Transients in Power Cables. London: Springer, 2013.
9. CIGRE Working Group B1.10. Update of Service Experience of HV Underground and Submarine Cables. Paris: CIGRE, 2009.
10. Виноградов А.В. Анализ повреждаемости электрооборудования электрических сетей и обоснование мероприятий по повышению надежности электроснабжения потребителей // Вестник НГИЭИ. 2015. № 12(55). С. 12—21.
11. Бурлаков Е. и др. Переходные процессы и перенапряжения в однофазных кабельных линиях высокого напряжения // Электротехника. 2017. № 1. С. 3—9.
12. Кадомская К.П., Лавров Ю.А., Рейхердт А.А. Перенапряжения в электрических сетях различного назначения и защита от них. Новосибирск: Изд-во Новосибирского гос. техн. ун-та, 2006.
13. Токарев С.Ю. Фазо-модальное преобразование многопроводных линий // Вестник Ивановского гос. энергетического ун-та. 2014. № 2. С. 25—30.
14. Иванов И.Е. Аналитическое определение параметров транспонированной линии электропередачи на базе синхронизированных векторных измерений // Вестник Ивановского гос. энергетического ун-та. 2019. № 1. С. 30 —42.
15. Palone F. e. a. Switching Transients on Very Long HV ac Cable Lines: Simulations and Measurements on the 230 kV Malta-Sicily Interconnector // Proc. CIGRE Session. Paris, 2016.
16. Georgiev D. e. a. Transients in Power Systems with a Large Share of HV Cables // Proc. XII Electrical Engineering Faculty Conf. 2020. Pp. 1—4.
17. Нудельман Г.С. и др. Система селективного автоматического повторного включения кабельно-воздушных линий электропередачи напряжением 110 кВ и выше. Результаты разработки и опыт внедрения // Релейщик. 2020. № 3(38). С. 12—19.
18. Ghassemi F. Effect of Trapped Charges on Cable SVL Failure // Electric Power Systems Research. 2014. V. 115. Pp. 18—25.
19. Pordanjani I.R. e. a. Discharge Characteristics of Trapped Charge in Power Lines with Underground Cable and Overhead Line Segments // Proc. IEEE/IAS 52nd Industrial and Commercial Power Systems Techn. Conf. 2016. Pp. 1—6.
20. Robson S. e. a. Non-contact Measurement and Analysis of Trapped Charge Decay Rates for Cable Line Switching Transients // Energies. 2020. V. 5. Pp. 1142—1162.
21. ГОСТ Р МЭК 62067—2011. Кабели силовые с экструдированной изоляцией и арматура к ним на номинальное напряжение свыше 150 кВ (Um = 170 кВ) до 500 кВ (Um = 550 кВ). Методы испытаний и требования к ним.
22. ГОСТ Р МЭК 60071-1:1993. Координация изоляции. Ч. 1. Термины, определения, принципы и правила.
23. Ohno T. e. a. Derivation of Theoretical Formulas of the Frequency Component Contained in the Overvoltage Related to Long EHV Cables // IEEE Trans. Power Delivery. 2012. V. 27. Pp. 866—876.
---
Для цитирования: Лахлах М.Х., Чо Г.Ч., Монаков Ю.В. Применение метода волновых каналов при анализе коммутационных перенапряжений, возникающих в процессе включения высоковольтной кабельной линии // Вестник МЭИ. 2023. № 2. С. 68—76. DOI: 10.24160/1993-6982-2023-2-68-76.
#
1. Grin' A.V., Mneka A.S. Opyt Montazha Kabel'nykh Liniy 500 kV s Kabelyami s Polietilenovoy Izolyatsiey na Bureyskoy GES, Zagorskoy GAES, Boguchanskoy GES, KVL 500 kV PS «Zapadnaya» – PS «Ochakovo». Kabeli i Рrovoda. 2020;6(386):26—32. (in Russian).
2. Liao Y. e. a. Breakdown Failure Analysis of 220 kV Cable Joint with Large Expanding Rate under Closing Overvoltage. Eng. Failure Analysis. 2021;120:1—15.
3. Lai Q. e. a. Investigation of Tail Pipe Breakdown Incident for 110 kV Cable Termination and Proposal of Fault Prevention. Eng. Failure Analysis. 2020;108:104353.
4. Wang H. e. a. Analysis of Transient Characteristics in the 110kV Cable Joint System During Switch Closing. Proc. II Intern. Conf. Electrical Materials and Power Equipment. 2019:395—399.
5. Chen S. e. a. Analysis and Countermeasure of 110KV Cable Joint Defects. Proc. IEEE III Conf. Energy Internet and Energy System Integration. 2019:2342—2345.
6. Liao Y. e. a. Numerical Analysis of Transient Overvoltages from Sequential Switching of 220 kV Tunnel Cables. Proc. IV Intern. Conf. Electric Power Equipment-Switching Technol. 2017:1002—1005.
7. Ren H., Zhang Y. Analysis on Switching Overvoltage and Suppression Method of Cable Joint in 500 kV Cable Line. Energy Rep. 2021;7:567—575.
8. Da Silva F.F., Bak C.L. Electromagnetic Transients in Power Cables. London: Springer, 2013.
9. CIGRE Working Group B1.10. Update of Service Experience of HV Underground and Submarine Cables. Paris: CIGRE, 2009.
10. Vinogradov A.V. Analiz Povrezhdaemosti Elektrooborudovaniya Elektricheskikh Setey i Obosnovanie Meropriyatiy po Povysheniyu Nadezhnosti Elektrosnabzheniya Potrebiteley. Vestnik NGIEI. 2015;12(55):12—21. (in Russian).
11. Burlakov E. i dr. Perekhodnye Protsessy i Perenapryazheniya v Odnofaznykh Kabel'nykh Liniyakh Vysokogo Napryazheniya. Elektrotekhnika. 2017;1:3—9 (in Russian).
12. Kadomskaya K.P., Lavrov Yu.A., Reykherdt A.A. Perenapryazheniya v Elektricheskikh Setyakh Razlichnogo Naznacheniya i Zashchita ot Nikh. Novosibirsk: Izd-vo Novosibirskogo Gos. Tekhn. Un-ta, 2006. (in Russian).
13. Tokarev S.Yu. Fazo-modal'noe Preobrazovanie Mnogoprovodnykh Liniy. Vestnik Ivanovskogo Gos. Energeticheskogo Un-ta. 2014;2:25—30. (in Russian).
14. Ivanov I.E. Analiticheskoe Opredelenie Parametrov Transponirovannoy Linii Elektroperedachi na Baze Sinkhronizirovannykh Vektornykh Izmereniy. Vestnik Ivanovskogo Gos. Energeticheskogo Un-ta. 2019;1:30 —42. (in Russian).
15. Palone F. e. a. Switching Transients on Very Long HV ac Cable Lines: Simulations and Measurements on the 230 kV Malta-Sicily Interconnector. Proc. CIGRE Session. Paris, 2016.
16. Georgiev D. e. a. Transients in Power Systems with a Large Share of HV Cables. Proc. XII Electrical Engineering Faculty Conf. 2020:1—4.
17. Nudel'man G.S. i dr. Sistema Selektivnogo Avtomaticheskogo Povtornogo Vklyucheniya Kabel'no-vozdushnykh Liniy Elektroperedachi Napryazheniem 110 kV i Vyshe. Rezul'taty Razrabotki i Opyt Vnedreniya. Releyshchik. 2020;3(38):12—19. (in Russian).
18. Ghassemi F. Effect of Trapped Charges on Cable SVL Failure. Electric Power Systems Research. 2014;115:18—25.
19. Pordanjani I.R. e. a. Discharge Characteristics of Trapped Charge in Power Lines with Underground Cable and Overhead Line Segments. Proc. IEEE/IAS 52nd Industrial and Commercial Power Systems Techn. Conf. 2016:1—6.
20. Robson S. e. a. Non-contact Measurement and Analysis of Trapped Charge Decay Rates for Cable Line Switching Transients. Energies. 2020;5:1142—1162.
21. GOST R MEK 62067—2011. Kabeli Silovye s Ekstrudirovannoy Izolyatsiey I Armatura k Nim na Nominal'noe Napryazhenie Svyshe 150 kV (Um = 170 kV) do 500 kV (Um = 550 kV). Metody Ispytaniy i Trebovaniya k Nim. (in Russian).
22. GOST R MEK 60071-1:1993. Koordinatsiya Izolyatsii. Ch. 1. Terminy, Opredeleniya, Printsipy i Pravila. (in Russian).
23. Ohno T. e. a. Derivation of Theoretical Formulas of the Frequency Component Contained in the Overvoltage Related to Long EHV Cables. IEEE Trans. Power Delivery. 2012;27:866—876.
---
For citation: Lahlah M.Kh., Cho G.Ch., Monakov Yu.V. Application of the Wave Channels Method to Analyze the Switching Overvoltages in Energizing a High-voltage Cable Line. Bulletin of MPEI. 2023;2:68—76. (in Russian). DOI: 10.24160/1993-6982-2023-2-68-76.

