Development of a Photovoltaic Module Two-Diode Model for Studying Transients in the Solar Power Plant DC Network

Authors

  • Даниил [Daniil] Юрьевич [Yu.] Середкин [Seredkin]
  • Юрий [Yuriy] Викторович [V.] Монаков [Monakov]
  • Санжар [Sanzhar] Алимович [A.] Шарапов [Sharapov]

DOI:

https://doi.org/10.24160/1993-6982-2023-2-98-107

Keywords:

protection devices, transient, photovoltaic module, photovoltaic plant, two-diode model, mathematical model, analysis model, fault

Abstract

The aim of the study is to develop and verify the analysis model of a photovoltaic module (PVM) based on a two-diode mathematical model in the MATLAB/Simulink software environment.

The trends of and forecasts for the further development of photovoltaic power plants are considered. The PVM mathematical model is described, and a procedure for obtaining the parameters that are not included in the PVM datasheet but necessary for implementing the analysis model is described.

The developed analysis model is verified based on the datasheet parameters of the PVM simulated and with reference to the values of PVM currents, voltages and power at the maximum power point (MPP) that were obtained on the test installation in the course of its operation. A classification of faults in the PVM arrays is given.

The obtained results will subsequently be used in the development of a photovoltaic power plant analysis model for calculating transients in PVM arrays during faults with taking into account the MPP tracking device operation for correctly selecting the protection devices in the PVM circuits and developing algorithms for detecting and isolating these faults.

Based on the obtained study results, a conclusion has been drawn about the need to take into account the influence of the insolation level, temperature, and PVM degradation in calculating transients in a photovoltaic array.

Author Biographies

Даниил [Daniil] Юрьевич [Yu.] Середкин [Seredkin]

Ph.D.-student of Electrical Stations Dept., NRU MPEI, e-mail: SeredkinDY@mpei.ru

Юрий [Yuriy] Викторович [V.] Монаков [Monakov]

Ph.D. (Techn.), Head of Electrical Stations Dept., NRU MPEI, e-mail: MonakovYV@mpei.ru

Санжар [Sanzhar] Алимович [A.] Шарапов [Sharapov]

Head of Long-term Development and Technical Support of Projects Dept., LLC «Unigrin Engineering», e-mail: S.Sharapov@unigreen-energy.com

References

1. IEA Renewables 2021. Analysis and Forecast to 2026 [Электрон. ресурс] https://iea.blob.core.windows.net/assets/5ae32253-7409-4f9a-a91d-1493ffb9777a/Renewables2021-Analysisandforecastto2026.pdf (дата обращения 05.01.2022).
2. Statista. Average Installed Cost for Solar Photovoltaics Worldwide from 2010 to 2020 [Электрон. ресурс] https://www.statista.com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/ (дата обращения 10.01.2022).
3. IEA PVPS. Annual Report 2021 Photovoltaic Power Systems Programme [Электрон. ресурс] https://iea-pvps.org/wp-content/uploads/2022/03/IEA-PVPS_Annual_Report_2021.pdf (дата обращения 10.08.2022).
4. IRENA. Solar Costs. International Renewable Energy Agency [Электрон. ресурс] https://www.irena.org/Statistics/View-Data-by-Topic/Costs/Solar-Costs (дата обращения 12.01.2021).
5. АРВЭ. Ежеквартальный информационный обзор рынка ВИЭ в России. I квартал 2022 [Электрон. ресурс] https://drive.google.com/file/d/1Mn2550Y0_xHTgdMkBn3L5TOg7lEMkCoj/view (дата обращения 31.07.2022).
6. Монаков Ю.В., Шарапов С.А., Середкин Д.Ю. Эффективность гетероструктурных фотоэлектрических модулей на территории России и корректность методики выбора защитных аппаратов в их цепях // Вестник МЭИ. 2021. № 6. С. 49—58.
7. Kontges M. e. a. Review of Failures of Photovoltaic Modules (External Final Rep. IEA-PVPS). Task 13. International Energy Agency (IEA), 2014.
8. De Lia F. e. a. Training on PV: Focus on Maintenance, Fault Research and Plant Performace Optimization // Proc. 27th European Photovoltaic Solar Energy Conf. and Exposition. Paris, 2013.
9. Klise G.T., Lavrova O., Gooding R. PV System Component Fault and Failure Compilation and Analysis. Albuquerque: Sandia National Lab., 2018.
10. Alam M.K., Khan F., Johnson J., Flicker J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques // IEEE J. Photovoltaics. 2015. V. 5. No. 3. Pp. 982—997.
11. Nguyen X.H., Nguyen M.P. Mathematical Modeling of Photovoltaic Cell/module/arrays with Tags in Matlab/Simulink // Environ Syst Res. 2015. V. 4. Pp. 1—13.
12. Pandiarajan N., Muthu R. Mathematical Modeling of Photovoltaic Module with Simulink // Proc. I Intern. Conf. Electrical Energy Syst. 2011. Pp. 258—263.
13. Syed I.M., Yazdani A. Simple Mathematical Model of Photovoltaic Module for Simulation in Matlab/Simulink // Proc. IEEE 27th Canadian Conf. Electrical and Computer Eng. 2014. Pp. 1—6.
14. Sinha D., Das A.B., Dhak D.K., Sadhu P.K. Equivalent Circuit Configuration for Solar PV Cell // Proc. I International Conf. Non Conventional Energy. 2014. Pp. 58—60.
15. Nahla M., Nor Zaihar Y., Balbir S. Single-diode Model and Two-diode Model of PV Modules: a Comparison // Proc. IEEE Intern. Conf. Control System, Computing and Eng. 2013. Pp. 210—214.
16. Habbati B., Ramdani Y., Moulay F. A Detailed Modeling of Photovoltaic Module Using Matlab // NRIAG Journal of Astronomy and Geophysics. 2014. V. 3. Pp. 53—61.
17. Nehme B., Sirdi N., Akiki T., Naamane A. Contribution to the Modeling of Ageing Effects in PV Cells and Modules. Cardif, 2014.
18. Sangram B., Saini R.P. A Mathematical Modeling Framework to Evaluate the Performance of Single Diode and Double Diode Based SPV Systems // Energy Rep. 2016. V. 2. Pp. 171—187.
19. Yahfdhou A. e. a. Evaluation and Determination of Seven and Five Parameters of a Photovoltaic Generator by an Iterative Method // Smart Grid and Renewable Energy. 2016. V. 7(9). Pp. 247—260.
20. Tsai Huan-Liang, Ci-Siang Tu, Yi-Jie Su. Development of Generalized Photovoltaic Model Using Matlab/Simulink // Proc. World Congress Eng. and Computer Sci. San Francisco, 2008. Pp. 1—6.
21. Thanikanti Sudhakar Babu e. a. Parameter Extraction of Two Diode Solar PV Model Using Fireworks Algorithm // Solar Energy. 2016. V. 140. Pp. 265—276.
22. Ruschel C. e. a. Assessment of PV Modules Shunt Resistance Dependence on Solar Irradiance // Solar Energy. 2016. V. 133. Pp. 35—43.
23. Tarabsheh A., Akmal M. Calculation of the Shunt Resistance across the Absorber Layer of Hydrogenated Amorphous Silicon Photovoltaic Cells. // Proc. VI Intern. Conf. Electrical and Electronics Eng. Istanbul, 2019. Pp. 12—16.
24. Dezso S. Series Resistance Monitoring for Photovoltaic Modules in the Vicinity of MPP // Proc. 25th European Photovoltaic Solar Energy Conf. 2010. Pp. 4506—4510.
25. Siddique H.A.B., Xu P., De Doncker R.W. Parameter Extraction Algorithm for One-diode Model of PV Panels Based on Datasheet Values // Proc. Intern. Conf. Clean Electrical Power. 2013. Pp. 7—13.
26. Sun Vat e. a. Evaluation of Nominal Operating Cell Temperature (NOCT) of Glazed Photovoltaic Thermal Module // Case Studies in Thermal Engineering. 2021. V. 28. P 101361.
27. Peshek T. e. a. Insights into Metastability of Photovoltaic Materials at the Mesoscale Through Massive I–V Analytics // J. Vacuum Sci. & Technol. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2016. V. 34. P. 050801.
---
Для цитирования: Середкин Д.Ю., Монаков Ю.В., Шарапов С.А. Реализация двухдиодной расчетной модели фотоэлектрического модуля для исследования переходных процессов в сети постоянного тока солнечных электростанций // Вестник МЭИ. 2023. № 2. С. 98—107. DOI: 10.24160/1993-6982-2023-2-98-107.
#
1. IEA Renewables 2021. Analysis and Forecast to 2026 [Elektron. Resurs] https://iea.blob.core.windows.net/assets/5ae32253-7409-4f9a-a91d-1493ffb9777a/Renewables2021-Analysisandforecastto2026.pdf (Data Obrashcheniya 05.01.2022).
2. Statista. Average Installed Cost for Solar Photovoltaics Worldwide from 2010 to 2020 [Elektron. Resurs] https://www.statista.com/statistics/809796/global-solar-power-installation-cost-per-kilowatt/ (Data Obrashcheniya 10.01.2022).
3. IEA PVPS. Annual Report 2021 Photovoltaic Power Systems Programme [Elektron. Resurs] https://iea-pvps.org/wp-content/uploads/2022/03/IEA-PVPS_Annual_Report_2021.pdf (Data Obrashcheniya 10.08.2022).
4. IRENA. Solar Costs. International Renewable Energy Agency [Elektron. Resurs] https://www.irena.org/Statistics/View-Data-by-Topic/Costs/Solar-Costs (Data Obrashcheniya 12.01.2021).
5. ARVE. Ezhekvartal'nyy Informacionnyy Obzor Rynka VIE v Rossii. I Kvartal 2022 [Elektron. Resurs] https://drive.google.com/file/d/1Mn2550Y0_xHTgdMkBn3L5TOg7lEMkCoj/view (Data Obrashcheniya 31.07.2022). (in Russian).
6. Monakov Yu.V., Sharapov S.A., Seredkin D.Yu. Effektivnost' Geterostrukturnykh Fotoelektricheskikh Moduley na Territorii Rossii i Korrektnost' Metodiki Vybora Zashchitnykh Apparatov v Ikh Cepyakh. Vestnik MEI. 2021;6: 49—58 (in Russian).
7. Kontges M. e. a. Review of Failures of Photovoltaic Modules (External Final Rep. IEA-PVPS). Task 13. International Energy Agency (IEA), 2014.
8. De Lia F. e. a. Training on PV: Focus on Maintenance, Fault Research and Plant Performace Optimization. Proc. 27th European Photovoltaic Solar Energy Conf. and Exposition. Paris, 2013.
9. Klise G.T., Lavrova O., Gooding R. PV System Component Fault and Failure Compilation and Analysis. Albuquerque: Sandia National Lab., 2018.
10. Alam M.K., Khan F., Johnson J., Flicker J. A Comprehensive Review of Catastrophic Faults in PV Arrays: Types, Detection, and Mitigation Techniques. IEEE J. Photovoltaics. 2015;5;3:982—997.
11. Nguyen X.H., Nguyen M.P. Mathematical Modeling of Photovoltaic Cell/module/arrays with Tags in Matlab/Simulink. Environ Syst Res. 2015;4:1—13.
12. Pandiarajan N., Muthu R. Mathematical Modeling of Photovoltaic Module with Simulink. Proc. I Intern. Conf. Electrical Energy Syst. 2011:258—263.
13. Syed I.M., Yazdani A. Simple Mathematical Model of Photovoltaic Module for Simulation in Matlab/Simulink. Proc. IEEE 27th Canadian Conf. Electrical and Computer Eng. 2014:1—6.
14. Sinha D., Das A.B., Dhak D.K., Sadhu P.K. Equivalent Circuit Configuration for Solar PV Cell. Proc. I International Conf. Non Conventional Energy. 2014:58—60.
15. Nahla M., Nor Zaihar Y., Balbir S. Single-diode Model and Two-diode Model of PV Modules: a Comparison. Proc. IEEE Intern. Conf. Control System, Computing and Eng. 2013:210—214.
16. Habbati B., Ramdani Y., Moulay F. A Detailed Modeling of Photovoltaic Module Using Matlab. NRIAG Journal of Astronomy and Geophysics. 2014;3:53—61.
17. Nehme B., Sirdi N., Akiki T., Naamane A. Contribution to the Modeling of Ageing Effects in PV Cells and Modules. Cardif, 2014.
18. Sangram B., Saini R.P. A Mathematical Modeling Framework to Evaluate the Performance of Single Diode and Double Diode Based SPV Systems. Energy Rep. 2016;2:171—187.
19. Yahfdhou A. e. a. Evaluation and Determination of Seven and Five Parameters of a Photovoltaic Generator by an Iterative Method. Smart Grid and Renewable Energy. 2016;7(9):247—260.
20. Tsai Huan-Liang, Ci-Siang Tu, Yi-Jie Su. Development of Generalized Photovoltaic Model Using Matlab/Simulink. Proc. World Congress Eng. and Computer Sci. San Francisco, 2008:1—6.
21. Thanikanti Sudhakar Babu e. a. Parameter Extraction of Two Diode Solar PV Model Using Fireworks Algorithm. Solar Energy. 2016;140:265—276.
22. Ruschel C. e. a. Assessment of PV Modules Shunt Resistance Dependence on Solar Irradiance. Solar Energy. 2016;133:35—43.
23. Tarabsheh A., Akmal M. Calculation of the Shunt Resistance across the Absorber Layer of Hydrogenated Amorphous Silicon Photovoltaic Cells.. Proc. VI Intern. Conf. Electrical and Electronics Eng. Istanbul, 2019:12—16.
24. Dezso S. Series Resistance Monitoring for Photovoltaic Modules in the Vicinity of MPP. Proc. 25th European Photovoltaic Solar Energy Conf. 2010:4506—4510.
25. Siddique H.A.B., Xu P., De Doncker R.W. Parameter Extraction Algorithm for One-diode Model of PV Panels Based on Datasheet Values. Proc. Intern. Conf. Clean Electrical Power. 2013:7—13.
26. Sun Vat e. a. Evaluation of Nominal Operating Cell Temperature (NOCT) of Glazed Photovoltaic Thermal Module. Case Studies in Thermal Engineering. 2021;28:101361.
27. Peshek T. e. a. Insights into Metastability of Photovoltaic Materials at the Mesoscale Through Massive I–V Analytics. J. Vacuum Sci. & Technol. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 2016;34:050801.
---
For citation: Seredkin D.Yu., Monakov Yu.V., Sharapov S.A. Development of a Photovoltaic
Module Two-Diode Model for Studying Transients in the Solar Power Plant DC Network.
Bulletin of MPEI. 2023;2:98—107. (in Russian). DOI: 10.24160/1993-6982-2023-2-98-107.

Published

2022-12-16

Issue

Section

Energy Systems and Complexes (2.4.5)