A Comparative Analysis of Electricity Load Profiles in Some European and Asian Countries. Part 2. Daily Load Profiles

Authors

  • Мьят [Myat] Йе Хтут [Ye Htut]
  • Галактион [Galaktion] Владимирович [V.] Шведов [Shvedov]

DOI:

https://doi.org/10.24160/1993-6982-2023-4-50-61

Keywords:

daily electricity load profile, maximum electrical load, power consumption profile, household power consumption

Abstract

Developing countries are currently characterized by rapid electrification of their population, and domestic electrical appliances are becoming more energy efficient. These processes are superimposed on the digitalization of the economy, development of the Internet of energy, and optimization of electricity consumption to reduce carbon emissions. It is impossible to determine the strategy for the development of the electric power industry in general and the electric grid complex in particular without accurately simulating the power consumption processes in the form of electricity load profiles.

This article presents the results from a review of publications, statistical research materials, and the results of various activities aimed at monitoring the daily electricity consumption both in power systems as a whole and in their individual elements, including distribution networks and individual household consumers. The daily electricity load profiles of the following countries are given: Myanmar, Laos, Sri Lanka, Bangladesh, Tajikistan, Kyrgyzstan, Saudi Arabia, Russian Federation, United Kingdom, Sweden, Germany, Portugal, and Italy. For each electricity load profile, the primary source of initial information is indicated.

In developed countries, the electricity consumption profile during the daytime is almost uniform in nature. In winter, the evening maximum slightly exceeds the morning one. In summer, the daily maximum shifts to the morning or afternoon hours. In developing countries, a significant decrease of electricity consumption is observed during the daytime. In all seasons, the daily maximum falls on the evening hours. In European countries and Russia, the maximum daily consumption by household consumers is in the evening hours. In the countries of Southeast Asia, the morning and evening maximums for household consumers are approximately the same.

The results of the review and the selected primary sources can be useful as input information on the electricity consumption processes for various studies in the electric power industry field.

Author Biographies

Мьят [Myat] Йе Хтут [Ye Htut]

Ph.D.-student of Power Electrical Systems Dept., NRU MPEI, e-mail: yehtutmyat.92@gmail.com

Галактион [Galaktion] Владимирович [V.] Шведов [Shvedov]

Ph.D. (Techn.), Assistant Professor of Power Electrical Systems Dept., NRU MPEI, e-mail: ShvedovGV@mpei.ru

References

1. Sri Lanka Energy Sector Assessment, Strategy, and Road Map. December 2019. Pp. 16—19 [Электрон. ресурс] http://dx.doi.org/10.22617/TCS190557-2 (дата обращения 20.10.2022).
2. Tahmid Mostafa Hasan, Saiful Islam, Abdul Kium Hridoy, Humaun Parvez. Demand side Management of Electricity for Controlling Peak Demands in Bangladesh [Электрон. ресурс] https://bpmi.portal.gov.bd/sites/default/files/files/bpmi.portal.gov.bd/page/bc0f0c3c_c487_463b_8873_6effb42cc584/2020-09-21-23-44-ee8c80b82150834fcc55901abf2e4655.pdf (дата обращения 20.10.2022).
3. Assessment of Electric Vehicle Penetration in the Lao People’s Democratic Republic // ERIA Research Project Rep. 2021. № 26.
4. Йе Хтут Мьят, Шведов Г.В. Графики электрической нагрузки на различных иерархических уровнях электроэнергетической системы Республики Союз Мьянмы // Энергосбережение — теория и практика: Труды XI Всерос. конф. с междунар. участием. М.: Изд-во МЭИ, 2022. С. 37—40.
5. Киргизов А.К. Развитие и оптимизация режимов электроэнергетической системы с распределенными возобновляемыми источниками энергии методами искусственного интеллекта (на примере Республики Таджикистан): автореф. дисс. … канд. техн. наук. Новосибирск: Новосибирский гос. техн. ун-т, 2017. С. 77—83.
6. Бузурманкулова Ч.М. Возможные пути сглаживания графика электрических нагрузок г. Бишкек // Современные тенденции развития науки и технологий: Материалы X Междунар. науч.-практ. конф. Белгород, 2016. C. 8—11.
7. Alshahrani J, Boait P. Reducing High Energy Demand Associated with Air-сonditioning Needs in Saudi Arabia // Energies. 2018. V. 12(1). Pp. 87—117.
8. Системный оператор единой энергетической системы [Офиц. сайт] https://www.so-ups.ru (дата обращения 20.10.2022).
9. Claire Gavin. Seasonal Variations in Electricity Demand [Электрон. ресурс] https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/295225/Seasonal_variations_in_electricity_demand.pdf (дата обращения 20.10.2022).
10. Tang O., Rehme J., Cerin P., Huisingh D. Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties // Energy Pol. 2021. V. 148. P. 111990.
11. Pruckner M., Eckhoff D., German R. Modeling Country-scale Electricity Demand Profiles // Proceedings of the Winter Simulation Conf. 2014. Pp. 1084—1095.
12. Camus C., Esteves J., Farias T. Integration of Electric Vehicles in the Electric Utility Systems // Electric Vehicles — The Benefits and Barriers. 2011. Pp. 135—158.
13. Semeraro L., Crisostomi E., Franco A., Giunta G. Electrical Load Clustering: the Italian Case // Proc. IEEE PES Innovative Smart Grid Technol. 2014. Pp. 1—6.
14. Таваров С.Ш., Маджидов Г.Х., Мираков О.А. Графики электрических нагрузок городских подстанций 35—110/6—10 кВ г. Душанбе и характер потребления электроэнергии // Европейские научные исследования: Сб. статей III Междунар. науч.-практ. конф. Пенза: МЦНС «Наука и просвещение», 2017. С. 35—41.
15. Асанов А.К., Джусупбекова Н.К., Тохтамов С.С. Характерные графики электрических нагрузок потребителей г. Бишкек // Вестник КРСУ. 2013. Т. 13. № 7. С. 80—84.
16. Демиденко А.С., Парфенов Г.А., Куделина С.А., Шведов Г.В. Анализ электропотребления квартиры и жилого здания в системах электроснабжения городов // Технологии будущего: Материалы VI Междунар. науч.-техн. конф. студентов и аспирантов. М.: Изд-во МЭИ, 2022. С. 145—150.
17. Knight I. e. a. European and Canadian Non-HVAC Electric and DHW Load Profiles for Use in Simulating the Performance of Residential Cogeneration Systems. Rep. of Subtask A of FC+COGEN-SIM the Simulation of Building-integrated Fuel Cell and Other Cogeneration Systems. Ottawa: Intern. Energy Agency, 2005.
18. Zimmermann J. P. End-use Metering Campaign in 400 Households in Sweden Assessment of the Potential Electricity Savin [Электрон. ресурс] https://www.enertech.fr/modules/catalogue/pdf/54/consommations%20usages%20electrodomestiques%20en%20Suede_2009.pdf (дата обращения 20.10.2022).
19. Alberini A., Prettico G., Shen C., Torriti J. Hot Weather and Residential Hourly Electricity Demand in Italy // Energy. 2019. V. 177. Pp. 44—56.
---
Для цитирования: Йе Хтут Мьят, Шведов Г.В. Сравнительный анализ графиков электрической нагрузки некоторых стран Европы и Азии. Ч. 2. Суточные графики // Вестник МЭИ. 2023. № 4. С. 50—61. DOI: 10.24160/1993-6982-2023-4-50-61
#
1. Sri Lanka Energy Sector Assessment, Strategy, and Road Map. December 2019:16—19 [Elektron. Resurs] http://dx.doi.org/10.22617/TCS190557-2 (Data Obrashcheniya 20.10.2022).
2. Tahmid Mostafa Hasan, Saiful Islam, Abdul Kium Hridoy, Humaun Parvez. Demand side Management of Electricity for Controlling Peak Demands in Bangladesh [Elektron. Resurs] https://bpmi.portal.gov.bd/sites/default/files/files/bpmi.portal.gov.bd/page/bc0f0c3c_c487_463b_8873_6effb42cc584/2020-09-21-23-44-ee8c80b82150834fcc55901abf2e4655.pdf (Data Obrashcheniya 20.10.2022).
3. Assessment of Electric Vehicle Penetration in the Lao People’s Democratic Republic. ERIA Research Project Rep. 2021;26.
4. Ye Htut Myat, Shvedov G.V. Grafiki Elektricheskoy Nagruzki na Razlichnykh Ierarkhicheskikh Urovnyakh Elektroenergeticheskoy Sistemy Respubliki Soyuz M'yanmy. Energosberezhenie — Teoriya i Praktika: Trudy XI Vseros. Konf. s Mezhdunar. Uchastiem. M.: Izd-vo MEI, 2022:37—40. (in Russian).
5. Kirgizov A.K. Razvitie i Optimizatsiya Rezhimov Elektroenergeticheskoy Sistemy s Raspredelennymi Vozobnovlyaemymi Istochnikami Energii Metodami Iskusstvennogo Intellekta (na Primere Respubliki Tadzhikistan): Avtoref. Diss. … Kand. Tekhn. Nauk. Novosibirsk: Novosibirskiy Gos. Tekhn. un-t, 2017:77—83. (in Russian).
6. Buzurmankulova Ch.M. Vozmozhnye Puti Sglazhivaniya Grafika Elektricheskikh Nagruzok g. Bishkek. Sovremennye Tendentsii Razvitiya Nauki i Tekhnologiy: Materialy X Mezhdunar. Nauch.-prakt. konf. Belgorod, 2016:8—11. (in Russian).
7. Alshahrani J, Boait P. Reducing High Energy Demand Associated with Air-sonditioning Needs in Saudi Arabia. Energies. 2018;12(1):87—117.
8. Sistemnyy Operator Edinoy Energeticheskoy Sistemy [Ofits. Sayt] https://www.so-ups.ru (Data Obrashcheniya 20.10.2022). (in Russian).
9. Claire Gavin. Seasonal Variations in Electricity Demand [Elektron. Resurs] https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/295225/Seasonal_variations_in_electricity_demand.pdf (Data Obrashcheniya 20.10.2022).
10. Tang O., Rehme J., Cerin P., Huisingh D. Hydrogen Production in the Swedish Power Sector: Considering Operational Volatilities and Long-term Uncertainties. Energy Pol. 2021;148:111990.
11. Pruckner M., Eckhoff D., German R. Modeling Country-scale Electricity Demand Profiles. Proceedings of the Winter Simulation Conf. 2014:1084—1095.
12. Camus C., Esteves J., Farias T. Integration of Electric Vehicles in the Electric Utility Systems. Electric Vehicles — The Benefits and Barriers. 2011:135—158.
13. Semeraro L., Crisostomi E., Franco A., Giunta G. Electrical Load Clustering: the Italian Case. Proc. IEEE PES Innovative Smart Grid Technol. 2014:1—6.
14. Tavarov S. Sh., Madzhidov G.Kh., Mirakov O.A. Grafiki Elektricheskikh Nagruzok Gorodskikh Podstantsiy 35—110/6—10 kV g. Dushanbe i Kharakter Potrebleniya Elektroenergii. Evropeyskie Nauchnye Issledovaniya: Sb. Statey III Mezhdunar. Nauch.-prakt. Konf. Penza: MTSNS «Nauka i Prosveshchenie», 2017:35—41. (in Russian).
15. Asanov A.K., Dzhusupbekova N.K., Tokhtamov S.S. Kharakternye Grafiki Elektricheskikh Nagruzok Potrebiteley g. Bishkek. Vestnik KRSU. 2013;13;7:80—84. (in Russian).
16. Demidenko A.S., Parfenov G.A., Kudelina S.A., Shvedov G.V. Analiz elektropotrebleniya Kvartiry i Zhilogo Zdaniya v Sistemakh Elektrosnabzheniya Gorodov. Tekhnologii Budushchego: Materialy VI Mezhdunar. Nauch.-tekhn. Konf. Studentov i Aspirantov. M.: Izd-vo MEI, 2022:145—150. (in Russian).
17. Knight I. e. a. European and Canadian Non-HVAC Electric and DHW Load Profiles for Use in Simulating the Performance of Residential Cogeneration Systems. Rep. of Subtask A of FC+COGEN-SIM the Simulation of Building-integrated Fuel Cell and Other Cogeneration Systems. Ottawa: Intern. Energy Agency, 2005.
18. Zimmermann J. P. End-use Metering Campaign in 400 Households in Sweden Assessment of the Potential Electricity Savin [Elektron. Resurs] https://www.enertech.fr/modules/catalogue/pdf/54/consommations%20usages%20electrodomestiques%20en%20Suede_2009.pdf (Data Obrashcheniya 20.10.2022).
19. Alberini A., Prettico G., Shen C., Torriti J. Hot Weather and Residential Hourly Electricity Demand in Italy. Energy. 2019;177:44—56.
---
For citation: Ye Htut Myat, Shvedov G.V. A Comparative Analysis of Electricity Load Profiles in Some European and Asian Countries. Part 2. Daily Load Profiles. Bulletin of MPEI. 2023;4:50—61. (in Russian). DOI: 10.24160/1993-6982-2023-4-50-61

Published

2023-04-12

Issue

Section

Electric Power Industry (Technical Sciences) (2.4.3)