Experimental Study of a Photovoltaic Thermal Battery with a Thin-film Module Based on CdTe

Authors

  • Ислом [Islom] Рахматович [R.] Жураев [Zhuraev]
  • Исроил [Isroil] Абриевич [A.] Юлдошев [Yuldoshev]
  • Зухра [Zukhra] Исламовна [I.] Жураева [Zhuraeva]

DOI:

https://doi.org/10.24160/1993-6982-2023-5-64-74

Keywords:

photovoltaic module, photovoltaic-thermal array, heating temperature, cooling method

Abstract

The article presents the results of an experimental study of a CdTe thin-film photovoltaic module (PVM) and a photovoltaic-thermal array (PVTA) developed on the basis of this type of PVM with an absorber in the form of a thermal array made of aluminum sheets in a box-like shape with radiator heat exchangers. The experimental data on the measured environmental parameters, electrophysical and thermal characteristics of the installations are given as of August 6, 2022. Due to the heat removal and cooling of the module, the daily average temperature values at the PVTA surface decreased by 19.7%, the electric power output increased by 5.8%, and the values of the no-load voltage and short-circuit current increased by 2.4% and 2.1%, respectively, in comparison with the PVM initial characteristics. By using the developed PVTA design, 134 L of heated water with an average temperature of 38 °C was produced during measurements from 10-00 to 17-30 h. The study results have shown that the presented PVTA design can be successfully used for combined production of electricity and heat for the needs of consumers.

Author Biographies

Ислом [Islom] Рахматович [R.] Жураев [Zhuraev]

Applicant, Research Assistant of Tashkent State Technical University Named after I. Karimov, Uzbekistan, e-mail: nauka-jir@mail.ru

Исроил [Isroil] Абриевич [A.] Юлдошев [Yuldoshev]

Dr.Sci. (Techn.), Professor of Tashkent State Technical University Named after I. Karimov, Uzbekistan

Зухра [Zukhra] Исламовна [I.] Жураева [Zhuraeva]

Assistant of Tashkent State Technical University Named after I. Karimov, Uzbekistan

References

1. Каргиев В.М. Новейшие технологии солнечных элементов и модулей [Электрон. ресурс] https://www.solarhome.ru/basics/solar/pv/modern-solar-cells.htm (дата обращения 25.12.2022).
2. Chow T.T. A Review on Photovoltaic/thermal Hybrid Solar Technology // Appl. Energy. 2010. V. 87. Pp. 365—379.
3. Haloui H. e. a. Comparative Study of the Hybrid Solar Thermal Photovoltaic Collectors Based on Thin Films Solar Cells in South of Algeria // Res Rev Electrochem. 2017. V. 8(2). Pp. 109—122.
4. Olawole O.C. e. a. Innovative Methods of Cooling Solar Panel: A Concise Review // J. Phys. Conf. Series. 2019. V. 1299(1). P. 012020.
5. Zain Ul Abdin, Ahmed Rachid. A Survey on Applications of Hybrid PV/T Panels // Energies. 2021. V. 14(4). P. 1205.
6. Mishra R.K., Tiwari G.N. Energy Matrices Analyses of Hybrid Photovoltaic Thermal Water Collector with Different PV Technology // Solar Energy. 2013. V. 91. Pp. 161—173.
7. Tiwari G.N., Gaur A. Photovoltaic Thermal (PVT) Systems and Its Applications // Proc II Intern. Conf. Green Energy and Technol. 2014. Pp. 132—138.
8. Strebkov D.S., Filippchenkova N.S. Results of an Experimental Study of a Solar Photovoltaic-Thermal Module // Appl. Solar Energy. 2020. V. 56. Pp. 442—448.
9. Fudholi A. e. a. Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors // Energy Conversion and Management. 2014. V. 78. Pp. 641—651.
10. Kazema H.A. e. a. Comparison and Evaluation of Solar Photovoltaic Thermal System with Hybrid Collector: An Experimental Study // Thermal Sc. and Eng. Progress. 2021. V. 22. P. 100845.
11. Sukhatme K., Sukhatme S.P. Solar Energy : Principles of Thermal Collection and Storage. N.-Y.: Tata McGraw Hill, 1996.
12. Кувшинов В.В., Бекиров Э.А. Теплофотоэлектрическая установка для комбинированной выработки тепловой и электрической энергии // Строительство и техногенная безопасность. 2019. № 15(67). С. 141—147.
13. Харченко В.В., Никитин Б.А., Тихонов П.В., Макаров А.Э. Теплоснабжение с использованием фотоэлектрических модулей // Техника в сельском хозяйстве. 2013. № 5. С. 11—12.
14. Харченко В.В. Комплекс мониторинга основных параметров гелиоустановок с фотопреобразователями // Альтернативная энергетика и экология. 2013. № 2(119). С. 32—36.
15. Турсунов М.Н., Юлдошев И.А. Разработка фотоэлектрических батарей, установок эффективно работающих в условиях Центральной Азии // Проблемы энергоресурсосбережения. 2011. Специальный выпуск. С. 160—165.
16. Турсунов М.Н., Дадамухамедов C., Юлдошев И.А., Турдиев Б.М. Комбинированная фототеплопреобразовательная установка // Нанотехнологии и возобновляемые источники энергии: Материалы республ. науч.-практ. конф. Ташкент, 2012. С. 173—175.
17. Tursunov M. e. a. Features of Optimization of Increasing the Efficiency of on Autonomous Photo Thermal Installation for Rural Regions // Proc. E3s Web of Сonf. 2020 [Электрон. ресурс] https://www.academia.edu/99201016/Features_of_optimization_of_increasing_the_efficiency_of_an_autonomous_photo_thermal_installation_for_rural_regions (дата обращения 25.12.2022).
18. Shoguchkarov S.K. e. a. Verification of Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Cocentrated Solar Radiation // Appl. Solar Energy. 2021. V. 57(5). Pp. 384—390.
19. Tursunov M.N., Muminov R.A., Dyskin V.G., Yuldoshev I.A. A Mobile Photothermal Converter and Its Operating Characteristics // Appl. Solar Energy. 2021. V. 49(1). Pp. 16—18.
20. Пономарев А.Б., Пикулева Э.А. Методология научных исследований. Пермь: Изд-во Пермского национ. исслед. политех. ун-та, 2014.
21. ГОСТ 58649—2019 (IEC 61829.2015). Батареи фотоэлектрические, измерения вольтамперных характеристик в натурных условиях.
22. ГОСТ Р МЭК 61853-1—2013. Модули фотоэлектрические. Определение рабочих характеристик и энергетическая оценка.
23. Honglu Zhu e. a. Online Modelling and Calculation for Operating Temperature of Silicon-Based PV Modules Based on BP-ANN // Intern. J. Photoenergy. 2017. V. 11. Pp. 1—13.
24. Виссарионов В.И., Дерюгина Г.В., Кузнецов В.А., Малинин Н.К. Солнечная энергетика. М., Издат. дом МЭИ, 2008.
25. Способы измерения мощности солнечных батарей [Электрон. ресурс] https://www.solnechnye.ru/batareya (Дата обращения 07.08.2022).
---
Для цитирования: Жураев И.Р., Юлдошев И.А., Жураева З.И. Экспериментальное исследование фотоэлектрической тепловой батареи с тонкопленочным модулем на основе CdTe // Вестник МЭИ. 2023. № 5. С. 64—74. DOI: 10.24160/1993-6982-2023-5-64-74
#
1. Kargiev V.M. Noveyshie Tekhnologii Solnechnykh Elementov i Moduley [Elektron. Resurs] https://www.solarhome.ru/basics/solar/pv/modern-solar-cells.htm (Data Obrashcheniya 25.12.2022). (in Russian).
2. Chow T.T. A Review on Photovoltaic/thermal Hybrid Solar Technology. Appl. Energy. 2010;87:365—379.
3. Haloui H. e. a. Comparative Study of the Hybrid Solar Thermal Photovoltaic Collectors Based on Thin Films Solar Cells in South of Algeria. Res Rev Electrochem. 2017;8(2):109—122.
4. Olawole O.C. e. a. Innovative Methods of Cooling Solar Panel: A Concise Review. J. Phys. Conf. Series. 2019;1299(1):012020.
5. Zain Ul Abdin, Ahmed Rachid. A Survey on Applications of Hybrid PV/T Panels. Energies. 2021;14(4):1205.
6. Mishra R.K., Tiwari G.N. Energy Matrices Analyses of Hybrid Photovoltaic Thermal Water Collector with Different PV Technology. Solar Energy. 2013;91:161—173.
7. Tiwari G.N., Gaur A. Photovoltaic Thermal (PVT) Systems and Its Applications. Proc II Intern. Conf. Green Energy and Technol. 2014:132—138.
8. Strebkov D.S., Filippchenkova N.S. Results of an Experimental Study of a Solar Photovoltaic-Thermal Module. Appl. Solar Energy. 2020;56: 442—448.
9. Fudholi A. e. a. Performance Analysis of Photovoltaic Thermal (PVT) Water Collectors. Energy Conversion and Management. 2014;78: 641—651.
10. Kazema H.A. e. a. Comparison and Evaluation of Solar Photovoltaic Thermal System with Hybrid Collector: An Experimental Study. Thermal Sc. and Eng. Progress. 2021;22:100845.
11. Sukhatme K., Sukhatme S.P. Solar Energy : Principles of Thermal Collection and Storage. N.-Y.: Tata McGraw Hill, 1996.
12. Kuvshinov V.V., Bekirov E.A. Teplofotoelektricheskaya Ustanovka dlya Kombinirovannoy Vyrabotki Teplovoy i Elektricheskoy Energii. Stroitel'stvo i Tekhnogennaya Bezopasnost'. 2019;15(67):141—147. (in Russian).
13. Kharchenko V.V., Nikitin B.A., Tikhonov P.V., Makarov A.E. Teplosnabzhenie s Ispol'zovaniem Fotoelektricheskikh Moduley. Tekhnika v Sel'skom Khozyaystve. 2013;5:11—12. (in Russian).
14. Kharchenko V.V. Kompleks Monitoringa Osnovnykh Parametrov Gelioustanovok s Fotopreobrazovatelyami. Al'ternativnaya Energetika i Ekologiya. 2013;2(119):32—36. (in Russian).
15. Tursunov M.N., Yuldoshev I.A. Razrabotka Fotoelektricheskikh Batarey, Ustanovok Effektivno Rabotayushchikh v Usloviyakh Tsentral'noy Azii. Problemy Energoresursosberezheniya. 2011. Spetsial'nyy Vypusk:160—165. (in Russian).
16. Tursunov M.N., Dadamukhamedov C., Yuldoshev I.A., Turdiev B.M. Kombinirovannaya Fototeplopreobrazovatel'naya Ustanovka. Nanotekhnologii i Vozobnovlyaemye Istochniki Energii: Materialy Respubl. Nauch.-prakt. Konf. Tashkent, 2012:173—175. (in Russian).
17. Tursunov M. e. a. Features of Optimization of Increasing the Efficiency of on Autonomous Photo Thermal Installation for Rural Regions. Proc. E3s Web of Sonf. 2020 [Elektron. Resurs] https://www.academia.edu/99201016/Features_of_optimization_of_increasing_the_efficiency_of_an_autonomous_photo_thermal_installation_for_rural_regions (Data Obrashcheniya 25.12.2022).
18. Shoguchkarov S.K. e. a. Verification of Mathematical Model for a Photovoltaic Thermal-Thermoelectric Generator Unit Using Cocentrated Solar Radiation. Appl. Solar Energy. 2021;57(5):384—390.
19. Tursunov M.N., Muminov R.A., Dyskin V.G., Yuldoshev I.A. A Mobile Photothermal Converter and Its Operating Characteristics. Appl. Solar Energy. 2021;49(1):16—18.
20. Ponomarev A.B., Pikuleva E.A. Metodologiya Nauchnykh Issledovaniy. Perm': Izd-vo Permskogo Natsion. Issled. Politekh. Un-ta, 2014. (in Russian).
21. GOST 58649—2019 (IEC 61829.2015). Batarei Fotoelektricheskie, Izmereniya Vol'tampernykh Kharakteristik v Naturnykh Usloviyakh. (in Russian).
22. GOST R MEK 61853-1—2013. Moduli Fotoelektricheskie. Opredelenie Rabochikh Kharakteristik i Energeticheskaya Otsenka. (in Russian).
23. Honglu Zhu e. a. Online Modelling and Calculation for Operating Temperature of Silicon-Based PV Modules Based on BP-ANN. Intern. J. Photoenergy. 2017;11:1—13.
24. Vissarionov V.I., Deryugina G.V., Kuznetsov V.A., Malinin N.K. Solnechnaya Energetika. M., Izdat. Dom MEI, 2008. (in Russian).
25. Sposoby Izmereniya Moshchnosti Solnechnykh Batarey [Elektron. Resurs] https://www.solnechnye.ru/batareya (Data obrashcheniya 07.08.2022). (in Russian)
---
For citation: Zhuraev I.R., Yuldoshev I.A., Zhuraeva Z.I. Experimental Study of a Photovoltaic Thermal Battery with a Thin-film Module Based on CdTe. Bulletin of MPEI. 2023;5:64—74. (in English). DOI: 10.24160/1993-6982-2023-5-64-74

Published

2023-06-06

Issue

Section

Energy Systems and Complexes (2.4.5)