The Influence of Aluminum Oxide Powder Plasma Spraying Parameters on the Adhesive Strength of Ceramic Coatings Applied to the Gas Turbine Engine Thermally Stressed Components
DOI:
https://doi.org/10.24160/1993-6982-2024-1-93-102Keywords:
plasma spraying coatings, spraying modes, adhesive strengthAbstract
The article presents the results of studying the effect the aluminum oxide powder plasma spraying parameters have on the adhesive strength of ceramic coating applied to the gas turbine engine thermally stressed components. The distance between the plasma torch and the substrate surface, the current value, and the hydrogen consumption were studied as the spraying process technological parameters. A mathematical model representing the dependence of adhesive strength on spraying parameters in the form of a second-order regression equation with three independent variables is proposed.
To calculate the estimates of the regression equation coefficients, 25 experiments were carried out according to the scheme of the second-order orthogonal plan. The estimates of the coefficients were calculated using the least squares method. The adequacy of the resulting equation was checked according to the Fisher criterion. To analyze the resulting model, the surface center coordinates and the eigenvalues of the Hessian matrix of the response function second derivatives were calculated. It has been found that the response surface has the form of a hyperbolic paraboloid with a saddle point at the center. The surface sections were studied, and the study results have shown that the adhesive strength of the coating with the substrate increases with increasing the plasma torch arc current and decreasing the distance. The adhesive strength dependence on the hydrogen consumption passes through a minimum at the surface center.
The parameters characterizing the coating durability were evaluated within the framework of a mathematical model of the adhesive bonds destruction kinetics. The experimental deformation curves obtained from adhesive strength tests were used to evaluate the parameters of the adhesive joint destruction kinetic model proposed in previous works. An algorithm for estimating these parameters is proposed, which is based on the numerical solution of the Cauchy problem for the durability equation with an incremental increase in the limiting stress value parameter at which mechanical rupture of adhesive bonds occurs at their maximum concentration. Numerical experiments have shown that the obtained estimates of this parameter are almost identical with the experimental rupture stress value. By virtue of this circumstance, the maximum safe stress limit when testing coatings for static durability will be equal to half this value.
References
2. Nozhnitsky Yu.A. The Problem of Ensuring Reliability of Gas Turbine Engines // IOP Conf. Ser.: Mater. Sci. Eng. 2018. V. 302(1). P. 012082.
3. Критский В.Ю., Зубко А.И. Исследование возможности использования керамических авиационных подшипников скольжения нового поколения в конструкциях опор роторов газотурбинных двигателей // Двигатель. 2013. № 3. С. 24—26.
4. Макарчук В.В. Стратегия развития методов расчета и конструирования высокоскоростных подшипников аэрокосмического применения // Авиационная и ракетно-космическая техника. 2009. № 3(19). С. 361—365.
5. Балинова Ю.А. и др. Высокотемпературные теплозащитные, керамические и металлокерамические композиционные материалы для авиационной техники нового поколения // Вестник Концерна ВКО «Алмаз – Антей». 2020. № 2. С. 83—92.
6. Chen H.F. e. a. Recent Progress in Thermal/environmental Barrier Coatings and Their Corrosion Resistance // Rare Metals. 2020. V. 39. Pp. 498—512.
7. Панков В.П., Бабаян А.Л., Куликов М.В., Коссой В.А., Варламов Б.С. Теплозащитные покрытия лопаток турбин авиационных газотурбинных двигателей // Ползуновский вестник. 2021. № 1. C. 161—172.
8. Yedida VV.S., Mehta A., Vasudev H., Singh S. Role of Numerical Modeling in Predicting the Oxidation Behavior of Thermal Barrier Coatings // Intern. J. Interactive Design and Manufacturing. 2023. V. 3. Pp. 1—10.
9. Пантелеенко Ф.И., Оковитый В.А. Формирование многофункциональных плазменных покрытий на основе керамических материалов. Минск: Изд-во БНТУ, 2019.
10. Газотермическое напыление / под общей ред. Балдаева Л.Х. М.: Маркет ДС, 2007.
11. Davis J.R. Handbook of Thermal Spray Technology. Russel: ASM Intern., 2004.
12. Кудинов В.В., Бобров Г.В. Нанесение покрытий напылением. Теория, технология и оборудование. М.: Металлургия, 1992.
13. Dolmaire A. e. a. Benefits of Hydrogen in a Segmented-anode Plasma Torch in Suspension Plasma Spraying // J Therm Spray Tech. 2021. V. 30. Pp. 236—250.
14. Ильющенко А.Ф., Шевцов А.И., Оковитый В.А., Громыко Г.Ф. Процессы формирования газотермических покрытий и их моделирование. Минск: Беларус навука, 2011.
15. Kuzmin V. e. a. Equipment and Еechnologies of Air-plasma Spraying of Functional Coatings // Proc. Intern. Conf. on Modern Trends in Manufacturing Technol. and Equipment– 2017. V. 129. P. 01052.
16. Aruna S.T., Balaji N., Shedthi J., Grips V.K. Effect of Critical Plasma Spray Parameters on the Microstructure, Microhardness and Wear and Corrosion Resistance of Plasma Sprayed Alumina Coatings // Surface & Coatings Technol. 2012. V. 208. Pp. 92—100.
17. Sahab A.R.M, Saad N.H., Kasolang S., Saedon J. Impact of Plasma Spray Variables Parameters on Mechanical and Wear Behaviour of Plasma Sprayed Al2O3 3%wt TiO2 Coating in Abrasion and Erosion Application // Proc. Eng. 2012. V. 41. Pp. 1689—1695.
18. Sarikaya O. Effect of Some Parameters on Microstructure and Hardness of Alumina Coatings Prepared by the Air Plasma Spraying Process // Surface and Coatings Technol. 2005. V. 190. No. 2—3. Pp. 388—393.
19. Wang Y.-Y., Li C.-J., Omari A. Influence of Substrate Roughness on the Bonding Mechanisms of High Velocity Oxy-fuel Sprayed Coatings // Thin Solid Films. 2005. V. 485. Pp. 141—147.
20. White B.C., Story W.A., Brewer L.N., Jordon J.B. Fracture Mechanics Methods for Evaluating the Adhesion of Cold Spray Deposits // Engineering Fracture Mechanics. 2019. V. 205. Pp. 57—69.
21. Asgharifar M., Kong F., Carlson B, Kovacevic R. An Experimental and Numerical Study of Effect of Textured Surface by Arc Discharge on Strength of Adhesively Bonded Joints // J. Mechanics Eng. and Automation. 2012. V. 2. Pp. 229—242.
22. Hussain T., McCartney D.G., Shipway P.H., Zhang D. Bonding Mechanisms in Cold Spraying: the Contributions of Metallurgical and Mechanical Components // J. Therm. Spray Technol. 2009. V. 18(3). Pp. 364—379.
23. Marot G. e. a. Interfacial Indentation and Shear Tests to Determine the Adhesion of Thermal Spray Coatings // Surf. Coat. Technol. 2006. V. 201. Pp. 2080—2085.
24. Farhan M.S. A review on Adhesion Strength of Single and Multilayer Coatings and the Evaluation Method // Wasit J. Eng. Sci. 2016. V. 4(1). Pp. 1—27.
25. Gnaeupel-Herold T. e. a. Microstructure, Mechanical Properties, and Adhesion in IN625 Air Plasma Sprayed Coatings // Mater. Sci. Eng., A. 2006. V. A421. Pp. 77—85.
26. Goldbaum D. e. a. The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats // J. Therm. Spray Technol. 2012. V. 21(2). Pp. 288—303.
27. Huang R., Fukanuma H. Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits // J. Therm. Spray Technol. 2012. V. 21. No. 3—4. Pp. 541—549.
28. Imbriglio S.I. e. a. Adhesion Strength of Titanium Particles to Alumina Substrates: a Combined Cold Spray and LIPIT Study // Surf. Coat. Technol. 2019. V. 361. Pp. 403—412.
29. Ермаков С.М. и др. Математическая теория планирования эксперимента. М.: Наука, 1983.
30. Ахназарова С.Л., Кафаров В.В. Методы оптимизации эксперимента в химической технологии. М.: Высшая школа, 1985.
31. Раухваргер А.Б., Язев В.А., Соловьев М.Е. Модель разрушения адгезионного соединения металл-полимер // Химическая физика и мезоскопия. 2014. № 1(16). C. 88—92.
32. Соловьев М.Е., Раухваргер А.Б., Балдаев С.Л., Балдаев Л.Х. Кинетическая модель разрушения адгезионного соединения порошкового покрытия и металлического субстрата // Наукоёмкие технологии в машиностроении. 2023. № 1(139). С. 9—19
---
Для цитирования: Балдаев С.Л., Соловьев М.Е., Раухваргер А.Б., Балдаев Л.Х., Мищенко В.И. Влияние параметров плазменного напыления порошка оксида алюминия на адгезионную прочность керамических покрытий термонапряженных узлов газотурбинных двигателей // Вестник МЭИ. 2024. № 1. С. 93—102. DOI: 10.24160/1993-6982-2024-1-93-102
#
1. Belousov A.I. Nadezhnost' Aviatsionnykh Dvigateley i Energeticheskikh Ustanovok. Samara: Izd-vo Samarskogo Gos. Aerokosmicheskogo Un-ta im. S.P. Koroleva, 2011. (in Russian).
2. Nozhnitsky Yu.A. The Problem of Ensuring Reliability of Gas Turbine Engines. IOP Conf. Ser.: Mater. Sci. Eng. 2018;302(1):012082.
3. Kritskiy V.Yu., Zubko A.I. Issledovanie Vozmozhnosti Ispol'zovaniya Keramicheskikh Aviatsionnykh Podshipnikov Skol'zheniya Novogo Pokoleniya v Konstruktsiyakh Opor Rotorov Gazoturbinnykh Dvigateley. Dvigatel'. 2013;3:24—26. (in Russian).
4. Makarchuk V.V. Strategiya Razvitiya Metodov Rascheta i Konstruirovaniya Vysokoskorostnykh Podshipnikov Aerokosmicheskogo Primeneniya. Aviatsionnaya i Raketno-Kosmicheskaya Tekhnika. 2009;3(19):361—365. (in Russian).
5. Balinova Yu.A. i dr. Vysokotemperaturnye Teplozashchitnye, Keramicheskie i Metallokeramicheskie Kompozitsionnye Materialy dlya Aviatsionnoy Tekhniki Novogo Pokoleniya. Vestnik Kontserna VKO «Almaz – Antey». 2020;2:83—92. (in Russian).
6. Chen H.F. e. a. Recent Progress in Thermal/environmental Barrier Coatings and Their Corrosion Resistance. Rare Metals. 2020;39:498—512.
7. Pankov V.P., Babayan A.L., Kulikov M.V., Kossoy V.A., Varlamov B.S. Teplozashchitnye Pokrytiya Lopatok Turbin Aviatsionnykh Gazoturbinnykh Dvigateley. Polzunovskiy Vestnik. 2021;1:161—172. (in Russian).
8. Yedida VV.S., Mehta A., Vasudev H., Singh S. Role of Numerical Modeling in Predicting the Oxidation Behavior of Thermal Barrier Coatings. Intern. J. Interactive Design and Manufacturing. 2023;3:1—10.
9. Panteleenko F.I., Okovityy V.A. Formirovanie Mnogofunktsional'nykh Plazmennykh Pokrytiy na Osnove Keramicheskikh Materialov. Minsk: Izd-vo BNTU, 2019. (in Russian).
10. Gazotermicheskoe Napylenie. Pod Obshchey Red. Baldaeva L.Kh. M.: Market DS, 2007. (in Russian).
11. Davis J.R. Handbook of Thermal Spray Technology. Russel: ASM Intern., 2004.
12. Kudinov V.V., Bobrov G.V. Nanesenie Pokrytiy Napyleniem. Teoriya, Tekhnologiya i Oborudovanie. M.: Metallurgiya, 1992. (in Russian).
13. Dolmaire A. e. a. Benefits of Hydrogen in a Segmented-anode Plasma Torch in Suspension Plasma Spraying. J Therm Spray Tech. 2021;30:236—250.
14. Il'yushchenko A.F., Shevtsov A.I., Okovityy V.A., Gromyko G.F. Protsessy Formirovaniya Gazotermicheskikh Pokrytiy i Ikh Modelirovanie. Minsk: Belarus Navuka, 2011. (in Russian).
15. Kuzmin V. e. a. Equipment and Eechnologies of Air-plasma Spraying of Functional Coatings. Proc. Intern. Conf. on Modern Trends in Manufacturing Technol. and Equipment– 2017;129:01052.
16. Aruna S.T., Balaji N., Shedthi J., Grips V.K. Effect of Critical Plasma Spray Parameters on the Microstructure, Microhardness and Wear and Corrosion Resistance of Plasma Sprayed Alumina Coatings. Surface & Coatings Technol. 2012;208:92—100.
17. Sahab A.R.M, Saad N.H., Kasolang S., Saedon J. Impact of Plasma Spray Variables Parameters on Mechanical and Wear Behaviour of Plasma Sprayed Al2O3 3%wt TiO2 Coating in Abrasion and Erosion Application. Proc. Eng. 2012;41:1689—1695.
18. Sarikaya O. Effect of Some Parameters on Microstructure and Hardness of Alumina Coatings Prepared by the Air Plasma Spraying Process. Surface and Coatings Technol. 2005;190;2—3:388—393.
19. Wang Y.-Y., Li C.-J., Omari A. Influence of Substrate Roughness on the Bonding Mechanisms of High Velocity Oxy-fuel Sprayed Coatings. Thin Solid Films. 2005;485:141—147.
20. White B.C., Story W.A., Brewer L.N., Jordon J.B. Fracture Mechanics Methods for Evaluating the Adhesion of Cold Spray Deposits. Engineering Fracture Mechanics. 2019;205:57—69.
21. Asgharifar M., Kong F., Carlson B, Kovacevic R. An Experimental and Numerical Study of Effect of Textured Surface by Arc Discharge on Strength of Adhesively Bonded Joints. J. Mechanics Eng. and Automation. 2012;2:229—242.
22. Hussain T., McCartney D.G., Shipway P.H., Zhang D. Bonding Mechanisms in Cold Spraying: the Contributions of Metallurgical and Mechanical Components. J. Therm. Spray Technol. 2009;18(3):364—379.
23. Marot G. e. a. Interfacial Indentation and Shear Tests to Determine the Adhesion of Thermal Spray Coatings. Surf. Coat. Technol. 2006;201:2080—2085.
24. Farhan M.S. A review on Adhesion Strength of Single and Multilayer Coatings and the Evaluation Method. Wasit J. Eng. Sci. 2016;4(1):1—27.
25. Gnaeupel-Herold T. e. a. Microstructure, Mechanical Properties, and Adhesion in IN625 Air Plasma Sprayed Coatings. Mater. Sci. Eng., A. 2006;A421:77—85.
26. Goldbaum D. e. a. The Effect of Deposition Conditions on Adhesion Strength of Ti and Ti6Al4V Cold Spray Splats. J. Therm. Spray Technol. 2012;21(2):288—303.
27. Huang R., Fukanuma H. Study of the Influence of Particle Velocity on Adhesive Strength of Cold Spray Deposits. J. Therm. Spray Technol. 2012;21;3—4:541—549.
28. Imbriglio S.I. e. a. Adhesion Strength of Titanium Particles to Alumina Substrates: a Combined Cold Spray and LIPIT Study. Surf. Coat. Technol. 2019;361:403—412.
29. Ermakov S.M. i dr. Matematicheskaya Teoriya Planirovaniya Eksperimenta. M.: Nauka, 1983. (in Russian).
30. Akhnazarova S.L., Kafarov V.V. Metody Optimizatsii Eksperimenta v Khimicheskoy Tekhnologii. M.: Vysshaya Shkola, 1985. (in Russian).
31. Raukhvarger A.B., Yazev V.A., Solov'ev M.E. Model' Razrusheniya Adgezionnogo Soedineniya Metall-polimer. Khimicheskaya Fizika i Mezoskopiya. 2014;1(16):88—92. (in Russian).
32. Solov'ev M.E., Raukhvarger A.B., Baldaev S.L., Baldaev L.Kh. Kineticheskaya model' Razrusheniya Adgezionnogo Soedineniya Poroshkovogo Pokrytiya i Metallicheskogo Substrata. Naukoemkie Tekhnologii v Mashinostroenii. 2023;1(139):9—19. (in Russian)
---
For citation: Baldaev S.L., Soloviev M.E., Raukhvarger A.B., Baldaev L.Kh., Mishchenko V.I. The Influence of Aluminum Oxide Powder Plasma Spraying Parameters on the Adhesive Strength of Ceramic Coatings Applied to the Gas Turbine Engine Thermally Stressed Components. Bulletin of MPEI. 2024;1:93—102. (in Russian). DOI: 10.24160/1993-6982-2024-1-93-102

