Application of Artificial Intelligence Technology to Formalizing the Fuzzy Data Processing Results
DOI:
https://doi.org/10.24160/1993-6982-2017-5-130-138Keywords:
power plants diagnostics, repair according to the actual technical state, inadequacy of diagnostics models, intellectual management problems, hybrid principle technologies, cognitive neural sciencesAbstract
One of the distinctive features pertinent to the present-day conditions under which the power plant equipment operate is the necessity to run it in variable modes, as a result of which certain changes occur in the equipment technical state with time. These factors have generated the need of solving, on a priority basis, a number of unresolved matters concerned with creating models for decision-making and state recognition proceeding from power plant diagnostics with the use of fuzzy information for identifying the equipment state and managing the equipment recovering processes. It should be noted, however, that there is no unified methodological approach to obtaining the relevant information for diagnostic purposes in solving such problems under the conditions of fuzziness and inhomogeneity of initial information about the actual equipment state and its residual life. As a result, the existing methods for shaping data and knowledge in performing an analysis of data and in making managerial decisions are not identified and are not interconnected with their mathematical models. In addition, they are aimed at solving separate tasks and are not always able to ensure that the equipment set model’s parameters are consistent with the actual state of the facility in question. At the same time, the shift that was done in the power industry from the policy of planned and preventive repairs to the policy of repairs according to the actual technical state has resulted in that a higher responsibility has to be undertaken by those who make decisions in determining the repair scope and timeframes, and, accordingly, more stringent requirements are imposed on the quality of diagnostic models. As a consequence of its having been made without doing proper methodical background work, such a shift has lead a situation in which the diagnostic and the decision-making models turned to be inadequate due to the use of information about the equipment state that contains uncertainties. At the same time, recent years have seen a drastically grown interest in various aspects of the intellectual management problem, in particular, the intellectual management by technologies according to a hybrid principle. One of the main areas involves the use of techniques developed within the framework of fuzzy systems and cognitive neural sciences: fuzzy sets, fuzzy logic, fuzzy modeling and management, semantic memory organization, fuzzy mathematics, artificial neural networks, pattern recognition, data processing by human neurons and brain, human consciousness, mind, memory, and artificial life. The article presents the results from extending the range of practical applications of the fuzzy and hybrid system techniques as applied to the technologies of estimating the state of complex technical systems (including power systems), especially under the conditions of data processing and using cognitive neural sciences.
References
2. Кантор Г. Труды по теории множеств. Ч. 1. Работы по теории множеств. М.: Наука, 1985.
3. Нечеткие множества и теория возможностей. Последние достижения. М.: Радио и связь, 1986.
4. Shafer G. Non-additive Probabilities in the Works of Bernoulli and Lambert // Archives for the History and Exact Sci. 1978. V. 19. Pp. 309—370.
5. Аткинсон Р., Бауэр Г., Кротерс Э. Введение в математическую теорию обучения. М.: Мир, 1969.
6. Анохин П.К. Очерки по физиологии функциональных систем. М.: Медицина, 1975.
7. Morris C. Signification and Significance. Cambridge: MIT Press, 1964.
8. Цветков Э.И. Процессорные измерительные средства. Л.: Энергоатомиздат, 1989.
9. Крохин Г.Д. Математические модели идентификации технического состояния турбоустановок на основе нечеткой информации: автореф. дисс. ... докт. техн. наук. Иркутск, 2008.
10. Аракелян Э.К., Крохин Г.Д., Мухин В.С. Концепция мягкого регулирования технического обслужи- вания энергоустановок ТЭС на основе интеллектуальной диагностики // Вестник МЭИ. 2008. № 1. С. 14—20.
11. Аверкин А.Н. и др. Нечеткие множества в моделях управления и искусственного интеллекта. М.: Наука, 1986.
12. Заде Л.А. Понятие состояния в теории систем. Общая теория систем. М.: Мир, 1966. С. 49—65.
13. Заде Л.А. Тени нечетких множеств // Проблемы передачи информации. 1966. № 1. С. 37—44.
14. Заде Л.А. Понятие лингвистической переменной и его применение к принятию приближенного решения. М.: Мир, 1976.
15. Аракелян Э.К., Крохин Г.Д., Мухин В.С. Концепция построения математических моделей диагностики энергооборудования на базе нечеткой информации // Вестник МЭИ. 2005. № 5. С. 28—33.
16. Крохин Г.Д., Мухин В.С., Судник Ю.А. Интеллектуальные технологии в теплоэнергетике. Ч. 1. М.: Триада, 2010.
17. Krokhin G., Kasnauskayte Y., Meshcheryakov I. Mathematical Fuzzy-Set-Based Models of Turbines’ Technical State Identification // Information and Communication Technologies in Education, Manufacturing and Research: Intern. Congress Information Techn. Saratov, 2014.
---
Для цитирования: Крохин Г.Д., Аракелян Э.К., Мухин В.С., Пестунов А.И. Применение методологии искусственного интеллекта для формализации результатов обработки нечеткой информации // Вестник МЭИ. 2017. № 5. С. 130—138. DOI: 10.24160/1993-6982-2017-5-130-138.
#
1. Zadeh L.A. Fuzzy Sets. Information and Control. 1965;8;3:338—353.
2. Kantor G. Trudy po Teorii Mnozhestv. Ch. 1. Raboty po Teorii Mnozhestv. M.: Nauka, 1985. (in Russian).
3. Nechetkie mnozhestva i Teoriya Vozmozhnostej. Poslednie Dostizheniya. M.: Radio i svyaz', 1986. (in Russian).
4. Shafer G. Non-additive Probabilities in the Works of Bernoulli and Lambert. Archives for the History and Exact Sci. 1978;19:309—370.
5. Atkinson R., Bauehr G., Kroters E. Vvedenie v Matematicheskuyu Teoriyu Obucheniya. M.: Mir, 1969. (in Russian).
6. Anohin P.K. Ocherki po fiziologii funkcional'nyh sistem. M.: Medicina, 1975. (in Russian).
7. Morris C. Signification and Significance. Cambridge: MIT Press, 1964.
8. Cvetkov E.I. Processornye Izmeritel'nye Sredstva. L.: Energoatomizdat, 1989. (in Russian).
9. Krohin G.D. Matematicheskie Modeli Identifikacii Tekhnicheskogo Sostoyaniya Turboustanovok na Osnove Nechetkoj Informacii: Avtoref. Diss. ... Dokt. Tekhn. Nauk. Irkutsk, 2008. (in Russian).
10. Arakelyan E.K., Krohin G.D., Muhin V.S. Koncepciya Myagkogo Regulirovaniya Tekhnicheskogo Obsluzhivaniya Ehnergoustanovok TES na Osnove Intellektual'noj Diagnostiki. Vestnik MPEI. 2008;1.:14—20. (in Russian).
11. Averkin A.N. i dr. Nechetkie Mnozhestva v Modelyah Upravleniya i Iskusstvennogo Intellekta. M.: Nauka, 1986. (in Russian).
12. Zade L.A. Ponyatie sostoyaniya V Teorii Sistem. Obshchaya teoriya sistem. M.: Mir, 1966.:49—65. (in Russian).
13. Zade L.A. Teni Nechetkih Mnozhestv. Problemy
Peredachi Informacii. 1966;1.:37—44. (in Russian).
14. Zade L.A. Ponyatie Lingvisticheskoj Peremennoj i Ego Primenenie k Prinyatiyu Priblizhennogo Resheniya. M.: Mir, 1976. (in Russian).
15. Arakelyan E.K., Krohin G.D., Muhin V.S. Koncepciya Postroeniya Matematicheskih Modelej Diagnostiki Ehnergooborudovaniya na Baze Nechetkoj Informacii. Vestnik MPEI. 2005; 5:28—33. (in Russian).
16. Krohin G.D., Muhin V.S., Sudnik Yu.A. Intellektual'nye Tekhnologii v Teploehnergetike. Ch. 1. M.: Triada 2010. (in Russian).
17. Krokhin G., Kasnauskayte Y., Meshcheryakov I. Mathematical Fuzzy-Set-Based Models of Turbines’Technical State Identification. Information and Communication Technologies in Education, Manufacturing and Research: Intern. Congress Information Techn. Saratov, 2014.
---
For citation: Krokhin G.D., Arakelyan E.K., Mukhin V.S., Pestunov A.I. Application of Artificial Intelligence Technology to Formalizing the Fuzzy Data Processing Results. MPEI Vestnik. 2017;5: 130—138. (in Russian). DOI: 10.24160/1993-6982-2017-5-130-138.

