Modeling Wet-steam Flows in the Flow Paths of Steam Turbines

Authors

  • Владимир [Vladimir] Георгиевич [G.] Грибин [Gribin]
  • Александр [Aleksandr] Антонович [A.] Тищенко [Tishchenko]
  • Илья [Il'ya] Юрьевич [Yu.] Гаврилов [Gavrilov]
  • Виктор [Viktor] Александрович [A.] Тищенко [Tishchenko]
  • Виталий [Vitaliy] Владимирович [V.] Попов [Popov]
  • Роман [Roman] Андреевич [A.] Алексеев [Alekseev]

DOI:

https://doi.org/10.24160/1993-6982-2018-3-8-20

Keywords:

steam turbine last stages, wet steam

Abstract

Designing the turbine flow paths intended to operate in the wet steam region that feature better technical and economic characteristics involves the need to solve a number of problems arising from the negative effect the liquid phase has on the reliability and efficiency of the turbine blade system operation. One of the most acute problems encountered in this field is that introduction of new technological solutions entails the need to carry out a set of highly complex, time-consuming, and very expensive research and development works. This is stemming, in particular, from the difficulty of obtaining reliable data on the two-phase flow structure and on the processes occurring in such flow under conditions maximally close to those under which the wet-steam turbine stages really operate. Application of numerical simulation methods can significantly simplify the efforts taken to design the steam turbine flow path elements. However, the complexity of the phenomena that occur in the course of steam expansion in the turbine stages generates the need to carefully validate the mathematical models. The article presents a wet steam flow modeling technique able to encompass a sufficiently wide range of phenomena that have to be considered for the two-phase medium parameters were described in a correct way. The developed technique includes three different basic models of the Ansys Fluent software code. Each of these models is used to analyze the motion of separate physical objects in the flow. The models for simulating the motion of a steam-droplet mixture and coarsely dispersed erosion hazardous droplets were modified to an essential extent by including additional programmable modules in the source code. The water film motion and generation processes were simulated using the standard Eulerian two- dimensional film model. The proposed numerical simulation technique has been validated for a wide range of initial and operating steam parameters in objects having different geometries. A comparison of calculated and experimental data has shown satisfactory agreement between the results both in the Wilson zone and in wet steam flows with developed film currents. The developed technique for calculating superheated and wet steam flows can be used in designing steam turbine stages operating in unsteady condensation and wet steam regions, and in elaborating active erosion-hazardous moisture control methods.

Author Biographies

Владимир [Vladimir] Георгиевич [G.] Грибин [Gribin]

Science degree:

Dr.Sci. (Techn.)

Workplace

Steam and Gas Turbines Dept., NRU MPEI

Occupation

head of department

Александр [Aleksandr] Антонович [A.] Тищенко [Tishchenko]

Science degree:

Ph.D. (Techn.)

Workplace

Steam and Gas Turbines Dept., NRU MPEI

Occupation

Assistant Professor

Илья [Il'ya] Юрьевич [Yu.] Гаврилов [Gavrilov]

Science degree:

Ph.D. (Techn.)

Workplace

Steam and Gas Turbines Dept., NRU MPEI

Occupation

Senior Lecturer

Виктор [Viktor] Александрович [A.] Тищенко [Tishchenko]

Science degree:

Ph.D. (Techn.)

Workplace

Steam and Gas Turbines Dept., NRU MPEI

Occupation

senior lecturer

Виталий [Vitaliy] Владимирович [V.] Попов [Popov]

Science degree:

Ph.D. (Techn.)

Workplace

Steam and Gas Turbines Dept., NRU MPEI

Occupation

Assistant

Роман [Roman] Андреевич [A.] Алексеев [Alekseev]

Workplace

Steam and Gas Turbines Dept., NRU MPEI

Occupation

Engineer, Ph.D.-student

References

1. Petr V., Kolovratnik M. Wet Steam Energy Loss and Related Baumann Rule in Low Pressure Steam Turbines // J. Power and Energy. 2014. V. 228. No. 2. Pp. 206—215.

2. Дейч М.Е. Газодинамика решеток турбомашин. М.: Энергоатомиздат, 1996.

3. Филиппов Г.А., Неккер Р., Селезнев Л.И. К расчету возникновения влаги в проточных частях турбин // Теплоэнергетика. 1977. № 7. С. 9—14.

4. Schatz M., Eberle T. Experimental Study of Steam Wetness in a Model Steam Turbine Rig: Presentation of Results And Comparison with Computational Fluid Dynamics Data // J. Power and Energy. 2014. V. 228. No. 2. Pp. 129—142.

5. Qulan Zhoum, Na Li, Xi Chen, Akio Yonezu, Tongmo Xu, Shien Hui, Di Zhang. Water Drop Erosion Turbine Blades: Numerical Framework and Application // Materials Transactions. 2008. V. 49. No. 7. Pp. 1606—1615.

6. Назаров В.В., Усачев К.М. Основные направления развития конструкций систем внутриканального удаления и дробления влаги в проточных частях влажнопаровых турбин // Тяжелое машиностроение. 2014. № 7. С. 13—17.

7. Young J.B., Yau K.K., Walters P.T. Fog Droplet Deposition and Coarse Water Formation in Low-pressure Steam Turbines: a Combined Experimental and Theoretical Analysis // J. Turbomachinery. 1988. V. 110. No. 2. Pp. 163–172.

8. Xiaoshu Cai, Li Ma, Chang Tian, Junfeng Li, Deiliang Ning, Wei Xu. Measurement of Coarse Water in Steam Turbines // Proc. Baumann Centenary Conf. Cambridge, 2012.

9. Филиппов Г.А., Поваров О.А. Сепарация влаги в турбинах АЭС. М.: Энергия, 1980.

10. Аветисян А.Р., Зайчик Л.И., Филиппов Г.А. Влияние турбулентности на стационарную и нестационарную спонтанную конденсацию пара в трансзвуковых соплах // Теплофизика высоких температур. 2007. Т. 45. № 5. С. 717—724.

11. Young J.B. Two-dimensional, Nonequilibrium, Wet-steam Calculations for Nozzles and Turbine Cascades // J. Turbomachinery. 1992. V. 114. Pp. 569—579.

12. Young J.B. Semi-Analytical Techniques for Investigating Thermal Non-equilibrium Effects in Wet-steam Turbines // Intern. J. Heat and Fluid Flow. 1984. V. 5. No. 2. Pp. 81—91.

13. Halama J., Fort J. Transonic Flow of Wet Steam: Some Remarks on Numerical Simulation // Baumann Centenary Conf. Cambridge, 2012.

14. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Switzerland: The International Association for the Properties of Water and Steam, 2007.

15. Филиппов Г.А., Аветисян А.Р. Расчетное исследование течения влажного пара в комбинированном выхлопе паровых турбин АЭС // Теплоэнергетика. 2010. № 9. С. 26—31.

16. Циглер Х.Х. Сепарация влаги в лопаточном канале паровой турбины // Энергомашиностроение. 1967. № 4. С. 23—25.

17. Watanabe E., Ohyama H., Tsutsumi M., Maruyama T., Tabata S. Comprehensive Research of Wetness Effects in Steam Turbines // Baumann Centenary Conf. Cambridge, 2012.

18. Morsi S.A., Alexander A.J. An Investigation of Particle Trajectories in Two-phase Flow Systems // J. Fluid Mechanics. 1972. V. 55. No. 2. Pp. 193—208.

19. Carlson D.J., Hoglund R.F. Particle Drag and Heat Transfer in Rocket Nozzles // AIAA J. 1964. V. 2. No. 11. Pp. 1980–1984.

20. Кириллов И.И., Фаддеев И.П., Шубенко А.Л. Сепарирующая способность решеток турбинных профилей, работающих на влажном паре // Энергомашиностроение. 1970. № 10. С. 40—41.

21. Moore M.J., Walters P.T., Crane R.I., Davidson B.J. Predicting the Fog-Drop Size in Wet-Steam Turbines // Proc. IMechE Conf. on Heat and Fluid Flow in Steam and Gas Turbine Plant. Coventry, 1973. Pp. 101—109.

22. Moses C.A., Stein G.D. On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements // J. Fluids Eng. 1978. V. 100. No. 4. Pp. 311—322.

23. Тищенко В.А. Разработка и реализация методики определения параметров жидкой фазы влажно-парового потока в элементах проточных частей турбомашин: дис. ... канд. техн. наук. М., 2014.

24. Дейч М.Е., Филиппов Г.А. Газодинамика двухфазных сред. М.: Энергоиздат, 1981.

25. Filippov G.A., Gribin V.G., TishchenkoA.A., Tischenko V.A., Gavrilov I.Yu. Experimental Studies of Polydispersed Wet Steam Flows In A Turbine Blade Cascade // J. Power and Energy. 2014. V. 228. No. 2. Pp. 168—177.

26. Gribin V.G. e. a. Experimental Study of Intra- channel Separation in a Flat Nozzle Turbine Blade Assembly with Wet Stream Flow // J. Power Techn. and Eng. 2016. V. 50. No. 2. Pp. 180—187.

27. Гаврилов И.Ю., Попов В.В., Сорокин И.Ю., Тищенко В.А., Хомяков С.В. Методика бесконтактного определения средних размеров эрозионно-опасных капель в полидисперсном влажно-паровом потоке // Теплоэнергетика. 2014. № 8. С. 39—46.

28. Грибин В.Г. и др. Влияние режимных параметров паротурбинной установки на характер распределения потоков частиц жидкой фазы за изолированной сопловой решеткой во влажно-паровом потоке // Промышленная энергетика. 2015. № 11. С. 30—36.

29. Филиппов Г.А. и др. Влияние вдува пара на характеристики сопловой решетки, работающей в условиях влажно-парового потока // Теплоэнергетика. 2016. № 4. С. 3—8.

30. Gribin V.G. е. а. Experimental Study of the Features of the Motion of Liquid-phase Particles in the Interblade Channel of the Nozzle Array of a Steam Turbine// Power Techn. and Eng. 2017. V. 51. No. 1. Pp. 82—88.

31. Mundo C., Sommerfeld M., Tropea C. Droplet- Wall Collisions: Experimental Studies of the Deformation and Breakup Process // Intern. J. Multiphase Flow. 1995. V. 21. No. 2. Pp. 151—173.
---
Для цитирования: Грибин В.Г., Тищенко А.А., Гаврилов И.Ю., Тищенко В.А., Попов В.В., Алексеев Р.А. Моделирование потоков влажного пара в сопловой турбинной решетке // Вестник МЭИ. 2018. № 3. С. 8—20. DOI: 10.24160/1993-6982-2018-3-8-20.
#
1. Petr V., Kolovratnik M. Wet Steam Energy Loss and Related Baumann Rule in Low Pressure Steam Turbines. J. Power and Energy. 2014;228;2:206—215.

2. Deych M.E. Gazodinamika Reshetok Turbomashin. M.: Energoatomizdat, 1996. (in Russian).

3. Filippov G.A., Nekker R., Seleznev L.I. K Raschetu Vozniknoveniya Vlagi v Protochnyh Chastyah Turbin. Teploenergetika. 1977;7:9—14. (in Russian).

4. Schatz M., Eberle T. Experimental Study of Steam Wetness in a Model Steam Turbine Rig: Presentation of Results And Comparison with Computational Fluid Dynamics Data. J. Power and Energy. 2014;228;2:129—142.

5. Qulan Zhoum, Na Li, Xi Chen, Akio Yonezu, Tongmo Xu, Shien Hui, Di Zhang. Water Drop Erosion Turbine Blades: Numerical Framework and Application. Materials Transactions. 2008;49;7:1606—1615.

6. Nazarov V.V., Usachev K.M. Osnovnye Napravleniya Razvitiya Konstruktsiy Sistem Vnutrikanal'nogo Udaleniya i Drobleniya Vlagi v Protochnyh Chastyah Vlazhnoparovyh Turbin. Tyazheloe Mashinostroenie. 2014;7:13—17. (in Russian).

7. Young J.B., Yau K.K., Walters P.T. Fog Droplet Deposition and Coarse Water Formation in Low-pressure Steam Turbines: a Combined Experimental and Theoretical Analysis. J. Turbomachinery. 1988;110;2:163–172.

8. Xiaoshu Cai, Li Ma, Chang Tian, Junfeng Li, Deiliang Ning, Wei Xu. Measurement of Coarse Water in Steam Turbines. Proc. Baumann Centenary Conf. Cambridge, 2012.

9. Filippov G.A., Povarov O.A. Separatsiya Vlagi v Turbinah AES. M.: Energiya, 1980. (in Russian).

10. Avetisyan A.R., Zaychik L.I., Filippov G.A. Vliyanie Turbulentnosti na Statsionarnuyu i Nestatsionarnuyu Spontannuyu Kondensatsiyu Para v Transzvukovyh Soplah. Teplofizika Vysokih Temperatur. 2007;45;5:717—724. (in Russian).

11. Young J.B. Two-dimensional, Nonequilibrium, Wet-steam Calculations for Nozzles and Turbine Cascades. J. Turbomachinery. 1992;114:569—579.

12. Young J.B. Semi-Analytical Techniques for Investigating Thermal Non-equilibrium Effects in Wet-steam Turbines. Intern. J. Heat and Fluid Flow. 1984;5;2:81—91.

13. Halama J., Fort J. Transonic Flow of Wet Steam: Some Remarks on Numerical Simulation. Baumann Centenary Conf. Cambridge, 2012.

14. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Switzerland: The International Association for the Properties of Water and Steam, 2007.

15. Filippov G.A., Avetisyan A.R. Raschetnoe Issledovanie Techeniya Vlazhnogo Para v Kombinirovannom Vyhlope Parovyh Turbin AES. Teploenergetika. 2010;9:26—31. (in Russian).

16. Tsigler H.H. Separatsiya Vlagi v Lopatochnom Kanale Parovoy Turbiny. Energomashinostroenie. 1967;4:23—25. (in Russian).

17. Watanabe E., Ohyama H., Tsutsumi M., Maruyama T., Tabata S. Comprehensive Research of Wetness Effects in Steam Turbines. Baumann Centenary Conf. Cambridge, 2012.

18. Morsi S.A., Alexander A.J. An Investigation of Particle Trajectories in Two-phase Flow Systems. J. Fluid Mechanics. 1972;55;2:193—208.

19. Carlson D.J., Hoglund R.F. Particle Drag and Heat Transfer in Rocket Nozzles. AIAA J. 1964;2;11:1980–1984.

20. Kirillov I.I., Faddeev I.P., Shubenko A.L. Separiruyushchaya Sposobnost' Reshetok Turbinnyh Profiley, Rabotayushchih na Vlazhnom Pare. Energomashinostroenie. 1970;10:40—41. (in Russian).

21. Moore M.J., Walters P.T., Crane R.I., Davidson B.J. Predicting the Fog-Drop Size in Wet-Steam Turbines. Proc. IMechE Conf. on Heat and Fluid Flow in Steam and Gas Turbine Plant. Coventry, 1973:101—109.

22. Moses C.A., Stein G.D. On the Growth of Steam Droplets Formed in a Laval Nozzle Using Both Static Pressure and Light Scattering Measurements. J. Fluids Eng. 1978;100;4:311—322.

23. Tishchenko V.A. Razrabotka i Realizatsiya Metodiki Opredeleniya Parametrov Zhidkoy Fazy Vlazhno-parovogo Potoka v Elementah Protochnyh Chastey Turbomashin: Dis. ... Kand. Tekhn. Nauk. M., 2014. (in Russian).

24. Deych M.E., Filippov G.A. Gazodinamika Dvuhfaznyh Sred. M.: Energoizdat, 1981. (in Russian).

25. Filippov G.A., Gribin V.G., Tishchenko A.A., Tischenko V.A., Gavrilov I.Yu. Experimental Studies of Polydispersed Wet Steam Flows In A Turbine Blade Cascade. J. Power and Energy. 2014;228;2:168—177.

26. Gribin V.G. e. a. Experimental Study of Intra-channel Separation in a Flat Nozzle Turbine Blade Assembly with Wet Stream Flow. J. Power Techn. and Eng. 2016;50;2:180—187.

27. Gavrilov I.Yu., Popov V.V., Sorokin I.Yu., Tishchenko V.A., Homyakov S.V. Metodika Beskontaktnogo Opredeleniya Srednih Razmerov Erozionno-opasnyh Kapel' v Polidispersnom Vlazhno-parovom Potoke. Teploenergetika. 2014;8:39—46. (in Russian).

28. Gribin V.G. i dr. Vliyanie Rezhimnyh Parametrov Paroturbinnoy Ustanovki na Harakter Raspredeleniya Potokov Chastits Zhidkoy Fazy za Izolirovannoy Soplovoy Reshetkoy vo Vlazhno-parovom Potoke. Promyshlennaya Energetika. 2015;11:30—36. (in Russian).

29. Filippov G.A. i dr. Vliyanie Vduva Para na Harakteristiki Soplovoy Reshetki, Rabotayushchey v Usloviyah Vlazhno-parovogo Potoka. Teploenergetika. 2016;4:3—8. (in Russian).

30. Gribin V.G. е. а. Experimental Study of the Features of the Motion of Liquid-phase Particles in the Interblade Channel of the Nozzle Array of a Steam Turbine. Power Techn. and Eng. 2017;51;1:82—88.

31. Mundo C., Sommerfeld M., Tropea C. Droplet- Wall Collisions: Experimental Studies of the Deformation and Breakup Process. Intern. J. Multiphase Flow. 1995;21;2:151—173.
---
For citation: Gribin V.G., Tishchenko А.А., Gavrilov I.Yu., Tishchenko V.А., Popov V.V., Alekseev R.А. Modeling Wet-steam Flows in the Flow Paths of Steam Turbines. MPEI Vestnik. 2018;3:8—20. (in Russian). DOI: 10.24160/1993-6982-2018-3-8-20.

Published

2018-06-01

Issue

Section

Power Engineering, Metallurgic and Chemical Machinery (05.04.00)