Influence of Electrode Biasing and Dynamic Ergodic Divertor on Characteristics of Intermittent Density Bursts in a Tokamak

Authors

  • Иракли [Irakli] Сулханович [S.] Нанобашвили [Nanobashvili]
  • Оост [Oost] Гвидо [Guido] Ван [Van]

DOI:

https://doi.org/10.24160/1993-6982-2020-3-17-24

Keywords:

plasma turbulence, turbulent transport processes, coherent turbulent structures, electrode biasing, dynamic ergodic divertor, thermonuclear fusion, tokamak

Abstract

Intermittent bursts of plasma density measured by Langmuir probes at the edge of TEXTOR tokamak are studied. These bursts appear as a result of turbulent plasma transport processes involving the formation and propagation of various coherent turbulent structures. Such processes impede controlled thermonuclear fusion: they degrade plasma confinement and entail increased heat load on the vacuum chamber walls and other components located near plasma; they also entail strong erosion of these components along with unwanted capture of tritium. Therefore, investigation of turbulent plasma transport processes and dynamics of coherent turbulent structures is one of the most important tasks to be solved for implementing controlled thermonuclear fusion. This is especially important in the context of elaborating and improving the methods for externally controlling the turbulent plasma transport processes. The electrode biasing method and a dynamic ergodic divertor are frequently used for externally influencing thermonuclear plasma and controlling turbulent transport processes.

It should be noted that by studying the temporal characteristics of plasma density bursts together with their radial dependence it becomes possible to get better understanding of and deeper insight into the physical nature of turbulent plasma transport processes and dynamics of coherent turbulent structures.

In this article, the temporal characteristics of plasma density bursts and their radial dependence are studied in two different modes: with electrode biasing and with a dynamic ergodic divertor. Conformable changes in the characteristics of intermittent bursts are observed in both cases. Namely, the average burst rate increases, and the average burst duration decreases in comparison with the ohmic regime. This is due to the fact that electrode biasing and certain regimes of the dynamic ergodic divertor cause changes in the radial electric field. This has a conformable effect on the dynamics of coherent turbulent structures and plasma transport processes through a shear poloidal flow, which emerges as a consequence of electric drift due to nonuniform radial electric field and toroidal magnetic field, which are perpendicular to each other.

After detailed investigations and refinement, it should become possible to use certain regimes of the dynamic ergodic divertor as a means of contactless biasing for externally controlling the turbulent plasma transport in thermonuclear installations.

Author Biographies

Иракли [Irakli] Сулханович [S.] Нанобашвили [Nanobashvili]

Ph.D.  (Phys.-Math.),  Senior  Researcher  of Andronikashvili  Institute  of  Physics  of  Ivane Javakhishvili Tbilisi State University, e-mail: inanob@yahoo.com

Оост [Oost] Гвидо [Guido] Ван [Van]

Ph.D.(Appl. Sci.), Professor, Applied Physics Dept., Ghent University, e-mail: guido.vanoost@ugent.be

References

1. Nanobashvili I. et. al. Comparative Analysis of Intermittent Burst Temporal Characteristics at the Edge of the CASTOR and Tore Supra Tokamaks // Phys. Plasmas. 2009. V. 16. P. 022309.
2. Nanobashvili I. et. al. About Bursty Behaviour, Coherent Structures, wide Scrape-off Layer and Large Parallel Flows in the Edge of the Tore Supra Tokamak // Czech. J. Phys. 2006. V. 56. Pp. 1339—1351.
3. Nanobashvili I., Gunn J., Devynck P. Radial Profiles of Plasma Turbulent Fluctuations in the Scrape-off Layer of the Tore Supra Tokamak // J. Nucl. Mater. 2007. V. 363 — 365. P. 622.
4. Nanobashvili I. et. al. Characterization of Intermittent Bursts at the Edge of the CASTOR Tokamak // Plasma Phys. Rep. 2008. V. 34. P. 720—724.
5. Weynants R.R. et. al. Confinement and Profile Chan-ges Induced by the Presence of Positive or Negative Radial Electric Fields in the Edge of the TEXTOR Tokamak // Nucl. Fusion. 1992. V. 32. No. 5. Pp. 837—854.
6. Finken K.H. et. al. The Dynamic Ergodic Divertor in the TEXTOR Tokamak: Plasma Response to Dynamic Helical Magnetic Field Perturbations // Plasma Phys. Control. Fusion. 2004. V. 46. No. 128. Pp. 143—156.
7. Xu Y. et. al. Influence of the Static Dynamic Ergodic Divertor on Edge Turbulence Properties in TEXTOR // Phys. Rev. Lett. 2006. V. 97 (16). P. 165003.
8. Xu Y. et. al. Edge Turbulence During the Static Dynamic Ergodic Divertor Experiments in TEXTOR // Nucl. Fusion. 2007. V. 47. Pp. 1696—1709.
9. Stangeby P.C., McCracken G.M. Plasma Boundary Phenomena in Tokamaks // Nucl. Fusion. 1990. V. 30. No. 7. Pp. 1225—1379.
10. Antar G.Y. et. al. Experimental Evidence of Intermittent Convection in the Edge of Magnetic Confinement Devices // Phys. Rev. Lett. 2001. V. 87. P. 065001.
11. Antar G.Y., Devynck P., Garbet X., Luckhardt S.C. Turbulence Intermittency and Burst Properties in Tokamak Scrape-off Layer // Phys. Plasmas. 2001. V. 8 (5). Pp. 1612—1624.
12. Kirnev G.S., Budaev V.P., Grashin S.A., Gerasimov E.V., Khimchenko L.N. Intermittent Transport in the Plasma Periphery of the T-10 Tokamak // Plasma Phys. Control. Fusion. 2004. V. 46 (4). Pp. 621—624.
13. Graves J.P., Horacek J., Pitts R.A., Hopkraft K.I. Self-similar Density Turbulence in the TCV Tokamak Scrape-off Layer // Plasma Phys. Control. Fusion. 2005. V. 47 (3). L. 1.
14. Xu Y.H., Jachmich S., Weynants R.R. On the Properties of Turbulence Intermittency in the Boundary of the TEXTOR Tokamak // Plasma Phys. Control. Fusion. 2005. V. 47 (10). P. 1841.
15. Maqueda R.J. et. al. Edge Turbulence Measurements in NSTX by Gas Puff Imaging // Rev. Sci. Instrum. 2001. V. 72 (1). Pp. 931—934.

16. Zweben S.J. еt. аl. Edge Turbulence Imaging in the Alcator C-Mod Tokamak // Phys. Plasmas. 2002. V. 9. P. 1981.
17. Terry J.L. et. al. Observations of the Turbulence in the Scrape-off-layer of Alcator C-Mod and Comparisons with Simulation // Phys. Plasmas 2003. V. 10. P. 1739—1747.
18. Filippas A.V. еt. аl. Conditional Analysis of Floating Potential Fluctuations at the Edge of the Texas Experimental Tokamak Upgrade (TEXT‐U) // Phys. Plasmas. 1995. V. 2 (3). Pp. 839—845.
19. Joseph B.K. et. al. Observation of Vortex-like Coherent Structures in the Edge Plasma of the ADITYA Tokamak // Phys. Plasmas. 1997. V. 4 (12). Pp. 4292—4300.
20. Carreras B.A. et. al. Fluctuation‐induced Flux at the Plasma Edge in Toroidal Devices // Phys. Plasmas. 1996. V. 3 (7). Pp. 2664—2672.
21. LaBombard B. et. al. Cross-field Plasma Transport and Main-Chamber Recycling in Diverted Plasmas on Alcator C-Mod // Nucl. Fusion. 2000. V. 40 (12). P. 2041—2094.
22. Moyer R.A., Lehmer R.D., Evans T.E., Conn R.W., Schmitz L. Nonlinear Analysis of Turbulence Across the L to H transition // Plasma Phys. Controlled Fusion. 1996. V. 38. No. 8. Pp. 1273—1278.
23. Antar G.Y., Cousnell G., Yu Y., LaBombard B., Devynck P. Universality of Intermittent Convective Transport in the Scrape-off Layer of Magnetically Confined Devices // Phys. Plasmas. 2003. V. 10. P. 419.
24. Boedo J.A. еt. аl. Transport by Intermittent Convection in the Boundary of the DIII-D Tokamak // Phys. Plasmas. 2001. V. 8. Pp. 4826—4833.
25. Boedo J.A. еt. аl. Transport by Intermittency in the Boundary of the DIII-D Tokamak // Phys. Plasmas. 2003. V. 10. No. 5. Pp. 1670—1677.
26. Shatalin S.V., Pavlov A.V., Popov A.Yu., Lashkul S.I., Esipov L.A. Investigation of Statistical Properties of Peripheral Fluctuations During an L-H Transition in the FT-2 Tokamak // Plasma Phys. Rep. 2007. V. 33. Pp. 169—178.
27. Sanchez R., Van Milligen B.Ph., Newman D.E., Carreras B.A. Quiet-time Statistics of Electrostatic Turbulent Fluxes from the JET Tokamak and the W7- AS and TJ-II Stellarators // Phys. Rev. Lett. 2003. V. 90. No. 18. P. 185005.
28. Nielsen A.H., Pesceli H.L., Rasmussen J.J. Turbulent Transport in low‐β plasmas // Phys. Plasmas. 1996. V. 3 (5). Pp. 1530—1544.
29. Carter T.A. Intermittent Turbulence and Turbulent Structures in a Linear Magnetized Plasma // Phys. Plasmas. 2006. V. 13 (1). P. 010701.
30. Windisch T., Grulke O., Klinger T. Radial Propagation of Structures in Drift Wave Turbulence // Phys. Plasmas. 2006. V. 13. P. 122303.
31. Spolaore M. et. al. Vortex-induced Diffusivity in Reversed Field Pinch Plasmas // Phys. Rev. Lett. 2004. V. 93. P. 215003.
32. Spolaore M. et. al. Effects of E×B Velocity Shear on Electrostatic Structures // Phys. Plasmas. 2002. V. 9 (10). Pp. 4110—4113.
33. Furno I. еt. аl. Experimental Observation of the Blob-Generation Mechanism from Interchange Waves in a Plasma // Phys. Rev. Lett. 2008. V. 100. P. 055004.
34. Katz N., Egedal J., Fox W., Le A., Porkolab M. Experiments on the Propagation of Plasma Filaments // Phys. Rev. Lett. 2008. V. 101. P. 015003.
35. Van Oost G. et. al. Multi-machine Studies of the Role of Turbulence and Electric Fields in the Establishment of Improved Confinement in Tokamak Plasmas // Plasma Phys. Control. Fusion. 2007. V. 49. No. 5. Pp. 29—44.
36. Hron M. еt. аl. Edge Turbulence at Plasma Polarization on the CASTOR Tokamak // Czech. J. Phys. 1999. V. 49. No. 3. P. 181.
37. Stöckel J. et. al. Fluctuation Studies at Plasma Polarization on the CASTOR Tokamak // Research and Appl. Plasmas. 2000. V. 41. P. 49.
38. Beyer P., Garbet X., Benkadda S., Ghendrih P., Sarazin Y. Electrostatic Turbulence and Transport with Stochastic Magnetic Field Lines // Plasma Phys. Control. Fusion. 2002. V. 44. Pp. 2167—2175.
39. Devynck P. et. al. Edge turbulence During Ergodic Divertor Operation in Tore Supra // Nucl. Fusion. 2002. V. 42 (6). P. 697.
---
Для цитирования: Нанобашвили И.С., Ван Оост Гвидо. Влияние электродной поляризации и динамического эргодического дивертора на характеристики прерывистых всплесков плотности плазмы в токамаке // Вестник МЭИ. 2020. № 3. С. 17—24. (in English). DOI: 10.24160/1993-6982-2020-3-17-24.
#
1. Nanobashvili I. et. al. Comparative Analysis of Intermittent Burst Temporal Characteristics at the Edge of the CASTOR and Tore Supra Tokamaks. Phys. Plasmas. 2009;16:022309.
2. Nanobashvili I. et. al. About Bursty Behaviour, Coherent Structures, wide Scrape-off Layer and Large Parallel Flows in the Edge of the Tore Supra Tokamak. Czech. J. Phys. 2006;56:1339—1351.
3. Nanobashvili I., Gunn J., Devynck P. Radial Profiles of Plasma Turbulent Fluctuations in the Scrape- off Layer of the Tore Supra Tokamak. J. Nucl. Mater. 2007;363—365:622.
4. Nanobashvili I. et. al. Characterization of Intermittent Bursts at the Edge of the CASTOR Tokamak. Plasma Phys. Rep. 2008;34:720—724.
5. Weynants R.R. et. al. Confinement and Profile Chan-ges Induced by the Presence of Positive or Negative Radial Electric Fields in the Edge of the TEXTOR Tokamak. Nucl. Fusion. 1992;32;5:837—854.
6. Finken K.H. et. al. The Dynamic Ergodic Divertor in the TEXTOR Tokamak: Plasma Response to Dynamic Helical Magnetic Field Perturbations. Plasma Phys. Control. Fusion. 2004;46;128:143—156.
7. Xu Y. et. al. Influence of the Static Dynamic Ergodic Divertor on Edge Turbulence Properties in TEXTOR. Phys. Rev. Lett. 2006;97 (16):165003.
8. Xu Y. et. al. Edge Turbulence During the Static Dynamic Ergodic Divertor Experiments in TEXTOR. Nucl. Fusion. 2007;47:1696—1709.
9. Stangeby P.C., McCracken G.M. Plasma Boundary Phenomena in Tokamaks. Nucl. Fusion. 1990;30;7: 1225—1379.
10. Antar G.Y. et. al. Experimental Evidence of Intermittent Convection in the Edge of Magnetic Confinement Devices. Phys. Rev. Lett. 2001;87:065001.
11. Antar G.Y., Devynck P., Garbet X., Luckhardt S.C. Turbulence Intermittency and Burst Properties in Tokamak Scrape-off Layer. Phys. Plasmas. 2001;8 (5):1612—1624.
12. Kirnev G.S., Budaev V.P., Grashin S.A., Gerasimov E.V., Khimchenko L.N. Intermittent Transport in the Plasma Periphery of the T-10 Tokamak. Plasma Phys. Control. Fusion. 2004;46 (4):621—624.
13. Graves J.P., Horacek J., Pitts R.A., Hopkraft K.I. Self-similar Density Turbulence in the TCV Tokamak Scrape-off Layer. Plasma Phys. Control. Fusion. 2005; 47 (3). L. 1.
14. Xu Y.H., Jachmich S., Weynants R.R. On the Properties of Turbulence Intermittency in the Boundary of the TEXTOR Tokamak. Plasma Phys. Control. Fusion. 2005;47 (10):1841.
15. Maqueda R.J. et. al. Edge Turbulence Measurements in NSTX by Gas Puff Imaging. Rev. Sci. Instrum. 2001;72 (1):931—934.
16. Zweben S.J. еt. аl. Edge Turbulence Imaging in the Alcator C-Mod Tokamak.. Phys. Plasmas. 2002;9:1981.
17. Terry J.L. et. al. Observations of the Turbulence in the Scrape-off-layer of Alcator C-Mod and Comparisons with Simulation. Phys. Plasmas 2003;10:1739—1747.
18. Filippas A.V. еt. аl. Conditional Analysis of Floating Potential Fluctuations at the Edge of the Texas Experimental Tokamak Upgrade (TEXT‐U). Phys. Plasmas. 1995;2 (3):839—845.
19. Joseph B.K. et. al. Observation of Vortex-like Coherent Structures in the Edge Plasma of the ADITYA Tokamak. Phys. Plasmas. 1997;4 (12):4292—4300.
20. Carreras B.A. et. al. Fluctuation‐induced Flux at the Plasma Edge in Toroidal Devices. Phys. Plasmas. 1996; 3 (7):2664—2672.
21. LaBombard B. et. al. Cross-field Plasma Transport and Main-Chamber Recycling in Diverted Plasmas on Alcator C-Mod. Nucl. Fusion. 2000;40 (12):2041—2094.
22. Moyer R.A., Lehmer R.D., Evans T.E., Conn R.W., Schmitz L. Nonlinear Analysis of Turbulence Across the L to H transition. Plasma Phys. Controlled Fusion. 1996; 38;8:1273—1278.
23. Antar G.Y., Cousnell G., Yu Y., LaBombard B., Devynck P. Universality of Intermittent Convective Transport in the Scrape-off Layer of Magnetically Confined Devices. Phys. Plasmas. 2003;10:419.
24. Boedo J.A. еt. аl. Transport by Intermittent Convection in the Boundary of the DIII-D Tokamak. Phys. Plasmas. 2001;8:4826—4833.
25. Boedo J.A. еt. аl. Transport by Intermittency in the Boundary of the DIII-D Tokamak. Phys. Plasmas. 2003;10;5:1670—1677.
26. Shatalin S.V., Pavlov A.V., Popov A.Yu., Lashkul S.I., Esipov L.A. Investigation of Statistical Properties of Peripheral Fluctuations During an L-H Transition in the FT-2 Tokamak. Plasma Phys. Rep. 2007;3:169—178.
27. Sanchez R., Van Milligen B.Ph., Newman D.E., Carreras B.A. Quiet-time Statistics of Electrostatic Turbulent Fluxes from the JET Tokamak and the W7- AS and TJ-II Stellarators. Phys. Rev. Lett. 2003;90.;18:185005.
28. Nielsen A.H., Pesceli H.L., Rasmussen J.J. Turbulent Transport in low‐β plasmas. Phys. Plasmas. 1996;3 (5):1530—1544.
29. Carter T.A. Intermittent Turbulence and Turbulent Structures in a Linear Magnetized Plasma. Phys. Plasmas. 2006;13 (1): 010701.
30. Windisch T., Grulke O., Klinger T. Radial Propagation of Structures in Drift Wave Turbulence. Phys. Plasmas. 2006;13:122303.
31. Spolaore M. et. al. Vortex-induced Diffusivity in Reversed Field Pinch Plasmas. Phys. Rev. Lett. 2004;93: 215003.
32. Spolaore M. et. al. Effects of E×B Velocity Shear on Electrostatic Structures. Phys. Plasmas. 2002;9 (10): 4110—4113.
33. Furno I. еt. аl. Experimental Observation of the Blob-Generation Mechanism from Interchange Waves in a Plasma. Phys. Rev. Lett. 2008;100:055004.
34. Katz N., Egedal J., Fox W., Le A., Porkolab M. Experiments on the Propagation of Plasma Filaments. Phys. Rev. Lett. 2008;101:015003.
35. Van Oost G. et. al. Multi-machine Studies of the Role of Turbulence and Electric Fields in the Establishment of Improved Confinement in Tokamak Plasmas. Plasma Phys. Control. Fusion. 2007;49;5:29—44.
36. Hron M. еt. аl. Edge Turbulence at Plasma Polarization on the CASTOR Tokamak. Czech. J. Phys. 1999;49;3:181.
37. Stöckel J. et. al. Fluctuation Studies at Plasma Polarization on the CASTOR Tokamak. Research and Appl. Plasmas. 2000;41:49.
38. Beyer P., Garbet X., Benkadda S., Ghendrih P., Sarazin Y. Electrostatic Turbulence and Transport with Stochastic Magnetic Field Lines. Plasma Phys. Control. Fusion. 2002;44:2167—2175.
39. Devynck P. et. al. Edge turbulence During Ergodic Divertor Operation in Tore Supra. Nucl. Fusion. 2002; 42 (6):697.
---
For citation: Nanobashvili I.S., Guido Van Oost. Influence of Electrode Biasing and Dynamic Ergodic Divertor on Characteristics of Intermittent Density Bursts in a Tokamak. Bulletin of MPEI. 2020;3:17—24. DOI: 10.24160/1993-6982-2020-3-17-24.
---
The work is executed at support: This work was carried out during the visit of I.N. to the Forschungszentrum Jülich (Germany), which was supported by the Erasmus Mundus Higher Education Program. GVO acknowledges for the partial financial support from MEPhI and MPEI in the framework of the Russian Academic Excellence Project.

Published

2019-10-30

Issue

Section

Nuclear Power Plants, Including Design, Operation and Decommissioning (05.14.03)