Non-standard Boundary Value Problems of the Field Theory on a Plane

Authors

  • Yuliy A. Dubinskiy
  • Lyubov V. Provotorova

DOI:

https://doi.org/10.24160/1993-6982-2025-6-206-211

Keywords:

system of Poisson equations, nonlocal boundary value problems, Friedrichs inequality, field theory, trace operator kernel, vector field decomposition, Sobolev space

Abstract

Two nonstandard boundary value problems in the theory of 2D vector fields for a system of Poisson equations are studied. The unique solvability of the problems is established, including an a priori assessment of solutions depending on the problem data. An example is given for the case of a rectangular area, demonstrating the non-standard boundary conditions of the problems set.

The proof of the main results is preceded by a criterion for the solvability of integral identities corresponding to the decomposition of vector fields into the sum of tangential and normal subspaces. Accordingly, the basic subspaces in which integral identities (and further boundary value problems) are considered are the kernels of normal and tangential trace operators in Sobolev space. The specified decomposition is uniquely determined by a tangential vector to the boundary of the domain in which the problems are considered. This is possible owing to the consideration of 2D vector fields and distinguishes the problems set from the 3D case. The criterion is proved using the Vishik-Lax-Milgram theorem.

It should be noted that the integral inequalities of the Friedrichs inequality type obtained in conducting the proof are, in our opinion, of certain independent interest. These inequalities have been obtained by proving a lemma showing the unconditional nature of the solvability of the integral identities under consideration.

Author Biographies

Yuliy A. Dubinskiy

Dr.Sci. (Phys.-Math.), Professor of Mathematical and Computer Modeling Dept., NRU MPEI, e-mail: julii_dubinskii@mail.ru

Lyubov V. Provotorova

Ph.D.-student, Assistant of Mathematical and Computer Modeling Dept., NRU MPEI, e-mail: prolubov2000@yandex.ru

References

1. Дубинский Ю.А., Зубков П.В. Неравенства Пуанкаре для 3D-векторных полей и задача Неймана // Проблемы математического анализа. 2024. Вып. 127. С. 91—107.

2. Дубинский Ю.А., Зубков П.В. Неравенства Фридрихса для 3D-векторных полей и задача Неймана // Проблемы математического анализа. 2025. Вып. 129. С. 51—62.

3. Дубинский Ю.А. О ядрах операторов следа и краевых задачах теории поля // Проблемы математического анализа. 2020. Вып. 106. С. 73—89.

4. Дубинский Ю.А., Провоторова Л.В. Нестандартные краевые задачи теории двумерных векторных полей // Проблемы математического анализа. 2024. Вып. 127. С. 107—116.

5. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М.: Наука, 1976.

6. Пугачев В.С. Лекции по функциональному анализу. М.: Изд-во МАИ, 1996.

7. Лебедев В.И. Функциональный анализ и вычислительная математика. М.: Физматлит, 2000.

8. Соболев С.Л. Некоторые применения функционального анализа в математической физике. Л.: Изд-во ЛГУ, 1950

---

Для цитирования: Дубинский Ю.А., Провоторова Л.В. Нестандартные краевые задачи теории поля на плоскости // Вестник МЭИ. 2025. № 6. С. 206—211. DOI: 10.24160/1993-6982-2025-6-206-211

---

Результаты работы получены в рамках выполнения государственного задания Министерствa науки и высшего образования Российской Федерации (проект № FSWF-2023-0012)

---

Конфликт интересов: авторы заявляют об отсутствии конфликта интересов

#

1. Dubinskiy Yu.A., Zubkov P.V. Neravenstva Puankare dlya 3D-Vektornykh Poley i Zadacha Neymana. Problemy Matematicheskogo Analiza. 2024;127:91—107. (in Russian).

2. Dubinskiy Yu.A., Zubkov P.V. Neravenstva Fridrikhsa dlya 3D-Vektornykh Poley i Zadacha Neymana. Problemy Matematicheskogo Analiza. 2025;129:51—62. (in Russian).

3. Dubinskiy Yu.A. O Yadrakh Operatorov Sleda i Kraevykh Zadachakh Teorii Polya. Problemy Matematicheskogo Analiza. 2020;106:73—89. (in Russian).

4. Dubinskiy Yu.A., Provotorova L.V. Nestandartnye Kraevye Zadachi Teorii Dvumernykh Vektornykh Poley. Problemy Matematicheskogo Analiza. 2024;127:107—116. (in Russian).

5. Kolmogorov A.N., Fomin S.V. Elementy Teorii Funktsiy i Funktsional'nogo Analiza. M.: Nauka, 1976. (in Russian).

6. Pugachev V.S. Lektsii po Funktsional'nomu Analizu. M.: Izd-vo MAI, 1996. (in Russian).

7. Lebedev V.I. Funktsional'nyy Analiz I Vychislitel'naya Matematika. M.: Fizmatlit, 2000. (in Russian).

8. Sobolev S.L. Nekotorye Primeneniya Funktsional'nogo Analiza v Matematicheskoy Fizike. L.: Izd-vo LGU, 1950. (in Russian)

---

For citation: Dubinskiy Yu.A., Provotorova L.V. Non-standard Boundary Value Problems of the Field Theory on a Plane. Bulletin of MPEI. 2025;6:206—211. (in Russian). DOI: 10.24160/1993-6982-2025-6-206-211

---

The Results were Obtained as Part of the State Assignment of the Ministry of Science and Higher Education of the Russian Federation (Project No. FSWF-2023-0012)

---

Conflict of interests: the authors declare no conflict of interest

Published

2025-12-26

Issue

Section

Differential Equations and Mathematical Physics (1.1.2)