Torrefaction of Food Waste in Vietnam for Using It as an Alternative Energy Source

Authors

  • Татьяна [Tatyana] Александровна [A.] Степанова [Stepanova]
  • Хыонг [Khuong] Нгуен Динь [Nguyen Dinh]

DOI:

https://doi.org/10.24160/1993-6982-2023-4-102-108

Keywords:

food waste, solid municipal waste, torrefaction, experimental method, alternative energy source

Abstract

In developing countries like Vietnam, there are not many methods for food waste reprocessing. Although food waste accounts for 40% of municipal solid waste, the energy potential of the former is very low in view of a high moisture content, and most of food waste is disposed in landfills. Food waste is the main cause of water and air pollution problems around landfills, and they have a very negative effect of the environmental conditions of cities. To reduce the burden on the environment, various food waste processing methods are developed and investigated, which is a matter of concern in many developing countries. However, in view of such characteristics of food waste as high moisture content (up to 70%) and low heating value (less than 4.6 MJ/kg), the use of a number of methods for processing it is difficult. To overcome these difficulties, the torrefaction method can be used as a pretreatment measure to improve the food waste characteristics. A data collection method and an experimental method involving the use of a high-temperature furnace to study the influence of temperature in the range from 225 to 300 °C on the torrefaction process have been implemented. The study results have shown that the torrefaction product’s higher heating value increases with increasing the temperature from 225 to 300 °C, while the energy yield decreases by almost 16%. The product’s highest heating value obtained at 300 °C is 26.41 MJ/kg, which is equivalent to the heating value of coal. This shows that torrefied food waste can potentially be used as an alternative fuel source in the future. The obtained results will be applied in the research and development of methods for torrefying not only food waste, but also other types of organic waste with a high moisture content and in the development of thermal process schemes for producing fuels from energy-carrying waste.

Author Biographies

Татьяна [Tatyana] Александровна [A.] Степанова [Stepanova]

Ph.D. (Techn.), Professor of Innovative Technologies for High-tech Industries Dept., NRU MPEI, e-mail: Stepanova@mpei.ru

Хыонг [Khuong] Нгуен Динь [Nguyen Dinh]

Ph.D.-student of Innovative Technologies for High-tech Industries Dept., NRU MPEI, e-mail: nguyenDin@mpei.ru

References

1. Степанова Т.А., Нгуен Д.Х., Нгуен Л.Х., Бернадинер И.М. Энергетическое использование твердых бытовых отходов в Социалистической Республике Вьетнам // Журнал по охране окружающей среды и делам заповедников. 2021. № 3—4(4). С. 138—147.
2. Перепись населения Вьетнама с 1955 по 2020 гг. [Электрон. ресурс] https://danso.org/viet-nam/ (дата обращения 10.12.2022).
3. Báo Cáo Hiện Trạng Môi Trường Quốc Gia Giai Đoạn 2016 — 2020. Dan Tri Publ. House, 2021.
4. Tiseo I. Annual per Capita Household Food Waste of Selected Countries Worldwide as of 2020 [Электрон. ресурс] https://www.statista.com/statistics/933059/per-capita-food-waste-of-selected-countries/ (дата обращения 10.12.2022).
5. Cheng Liu, Trung Thang Nguyen. Evaluation of Household Food Waste Generation in Hanoi and Policy Implications towards SDGs Target 12.3 // Sustainability. 2020. V. 12(16). P. 6565.
6. Min-Ngjc Nguyen. Population density of Ha Noi, Vietnam from 2011 to 2021 [Электрон. ресурс] https://www.statista.com/statistics/1188695/vietnam-hanoi-population-density/ (дата обращения 10.12.2022).
7. Оценка обращения с твердыми коммунальными отходами и опасными твердыми отходами во Вьетнаме. [Электрон. ресурс] https://thuvienso.quochoi.vn/handle/11742/54710 (дата обращения 10.12.2022).
8. Farrell M., Jones D.L. Food Waste Composting: Its use as a Peat Replacement // Waste Managerment. 2010. V. 30(8—9). Рp. 1495—1501.
9. Saleh S., Hansen B.B., Jensen P.A., Johansen K.D. Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomass // Energy Fuel. 2013. V. 27(12). Pp. 7531—7540.
10. Wahid F.R.A.A., Harun N.H.H.M., Rashid S.R.M., Samad N.A.F.A., Saleh S. Physicochemical Property Changes and Volatile Analysis for Torrefaction of Oil Palm Frond // Chem Eng Trans 2017. V. 56. Pp. 199—204.
11. Prins M.J., Ptasinski K.J., Janssen F.J.J.G. More Efficient Biomass Gasification via Torrefaction // Energy. 2006. V. 31(15). Pp. 3458—3470.
12. Poudel J. e. a. A Study on Torrefaction of Food Waste // Fuel. 2015. V. 140. Pp. 275—281.
13. Вьет N.T., Зиеу T.T.M. Образующийся источник, состав и свойства ТКО во Вьетнаме [Электрон. ресурс] http://www.gree-vn.com/pdf/Chuong_2_Quan_ly_CTRSH.pdf (дата обращения 10.12.2022).
14. Amoo, O.M., Fagbenle, R.L. Renewable Municipal Solid Waste Pathways for Energy Generation and Sustainable Development in the Nigerian Context // Int. J. Energy Environ. Eng. 2013. V. 4(1). Pp. 1—17.
15. Huang Yu Qiao, Xianfeng Wei, Juntong Zhou, Yun Yu, Minghou Xu. Effect of Torrefaction on Steam Gasification of Starchy Food Waste // Fuel. 2019. V. 253. Pp. 1556—1564.
16. Bergman P.C.A., Boersma A.R., Zwart R.W.R., Kiel J.H.A. Torrefaction for Biomass Co-firing in Existing Coal-Fired Power Stations «BIOCOAL». Petten: Energy Research Center of the Netherlands (ECN), 2005.
17. Schumacher G., Juniper L. Coal Utilization in the Cement and Concrete Industries // The Coal Handbook: Towards Cleaner Production, 2013. Pp. 387—426.
18. Harun N.H.H.M., Wahid F.R.A.A., Saleh S., Samad N.A.F.A. Effect of Torrefaction on Palm Oil Waste Chemical Properties and Kinetic Parameter Estimation // Chem. Eng. Trans. 2017. V. 56. Pp. 1195—1200.
19. Bach Quang-Vu, Øyvind Skreiberg, Chul-Jin Lee. Process Modeling and Optimization for Torrefaction of Forest Residues // Energy. 2017. V. 138. Pp. 348—354.
20. Buratti C. e. a. Optimization of Torrefaction Conditions of Coffee Industry Residues Using Desirability Function Approach // Waste Management. 2018. V. 73. Pp. 523—534.
---
Для цитирования: Степанова Т.А., Нгуен Динь Хыонг. Торрефикация пищевых отходов во Вьетнаме для их использования в качестве альтернативного источника энергии // Вестник МЭИ. 2023. № 4. С. 102—108. DOI: 10.24160/1993-6982-2023-4-102-108.
#
1. Stepanova T.A., Nguen D.Kh., Nguen L.Kh., Bernadiner I.M. Energeticheskoe Ispol'zovanie Tverdykh Bytovykh Otkhodov v Sotsialisticheskoy Respublike V'etnam. Zhurnal po Okhrane Okruzhayushchey Sredy i Delam Zapovednikov. 2021;3—4(4):138—147. (in Russian).
2. Perepis' Naseleniya V'etnama s 1955 po 2020 gg. [Elektron. Resurs] https://danso.org/viet-nam/ (Data Obrashcheniya 10.12.2022).
3. Báo Cáo Hiện Trạng Môi Trường Quốc Gia Giai Đoạn 2016 — 2020. Dan Tri Publ. House, 2021.
4. Tiseo I. Annual per Capita Household Food Waste of Selected Countries Worldwide as of 2020 [Elektron. Resurs] https://www.statista.com/statistics/933059/per-capita-food-waste-of-selected-countries/ (Data Obrashcheniya 10.12.2022).
5. Cheng Liu, Trung Thang Nguyen. Evaluation of Household Food Waste Generation in Hanoi and Policy Implications towards SDGs Target 12.3. Sustainability. 2020;12(16):6565.
6. Min-Ngjc Nguyen. Population density of Ha Noi, Vietnam from 2011 to 2021 [Elektron. Resurs] https://www.statista.com/statistics/1188695/vietnam-hanoi-population-density/ (Data Obrashcheniya 10.12.2022).
7. Otsenka Obrashcheniya s Tverdymi Kommunal'nymi Otkhodami i Opasnymi Tverdymi Otkhodami vo V'etname. [Elektron. Resurs] https://thuvienso.quochoi.vn/handle/11742/54710 (Data Obrashcheniya 10.12.2022).
8. Farrell M., Jones D.L. Food Waste Composting: Its use as a Peat Replacement. Waste Managerment. 2010;30(8—9):1495—1501.
9. Saleh S., Hansen B.B., Jensen P.A., Johansen K.D. Efficient Fuel Pretreatment: Simultaneous Torrefaction and Grinding of Biomass. Energy Fuel. 2013;27(12):7531—7540.
10. Wahid F.R.A.A., Harun N.H.H.M., Rashid S.R.M., Samad N.A.F.A., Saleh S. Physicochemical Property Changes and Volatile Analysis for Torrefaction of Oil Palm Frond. Chem Eng Trans 2017;56:199—204.
11. Prins M.J., Ptasinski K.J., Janssen F.J.J.G. More Efficient Biomass Gasification via Torrefaction. Energy. 2006;31(15):3458—3470.
12. Poudel J. e. a. A Study on Torrefaction of Food Waste. Fuel. 2015;140:275—281.
13. V'et N.T., Zieu T.T.M. Obrazuyushchiysya Istochnik, Sostav i Svoystva TKO vo V'etname [Elektron. Resurs] http://www.gree-vn.com/pdf/Chuong_2_Quan_ly_CTRSH.pdf (Data Obrashcheniya 10.12.2022).
14. Amoo, O.M., Fagbenle, R.L. Renewable Municipal Solid Waste Pathways for Energy Generation and Sustainable Development in the Nigerian Context. Int. J. Energy Environ. Eng. 2013;4(1):1—17.
15. Huang Yu Qiao, Xianfeng Wei, Juntong Zhou, Yun Yu, Minghou Xu. Effect of Torrefaction on Steam Gasification of Starchy Food Waste. Fuel. 2019;253:1556—1564.
16. Bergman P.C.A., Boersma A.R., Zwart R.W.R., Kiel J.H.A. Torrefaction for Biomass Co-firing in Existing Coal-Fired Power Stations «BIOCOAL». Petten: Energy Research Center of the Netherlands (ECN), 2005.
17. Schumacher G., Juniper L. Coal Utilization in the Cement and Concrete Industries. The Coal Handbook: Towards Cleaner Production, 2013:387—426.
18. Harun N.H.H.M., Wahid F.R.A.A., Saleh S., Samad N.A.F.A. Effect of Torrefaction on Palm Oil Waste Chemical Properties and Kinetic Parameter Estimation. Chem. Eng. Trans. 2017;56:1195—1200.
19. Bach Quang-Vu, Øyvind Skreiberg, Chul-Jin Lee. Process Modeling and Optimization for Torrefaction of Forest Residues. Energy. 2017;138:348—354.
20. Buratti C. e. a. Optimization of Torrefaction Conditions of Coffee Industry Residues Using Desirability Function Approach. Waste Management. 2018;73:523—534
---
For citation: Stepanova T.A., Nguyen Dinh Khuong. Torrefaction of Food Waste in Vietnam for Using It as an Alternative Energy Source. Bulletin of MPEI. 2023;4:102—108. (in Russian). DOI: 10.24160/1993-6982-2023-4-102-108

Published

2023-04-12

Issue

Section

Theoretical and Applied Heat Engineering (Technical Sciences) (2.4.6)